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1 Introduction

Hash functions are among the most useful functions in computer science as they map large
sets of keys to smaller sets of hash values. Hash functions are most commonly used for hash
tables, when a fast key-value look up is required. Because they are so ubiquitous, improving
their performance has a potential for large impact.

We implemented two hash functions (simple tabulation hashing and multiplication hash-
ing), as well as four collision resolution methods (linear probing, quadratic probing, cuckoo
hashing and hopscotch hashing). In total, we have eight combinations of hash functions and
collision resolutions. They are compared against three most popular C++ hash libraries:
unordered map structure in C++11 (GCC 4.4.5), unordered map in Boost library (version
1.42.0) and hash map in libstdc (GCC C++ extension library, GCC 4.4.5). We analyzed raw
performance parameters: running time, memory consumption and cache behavior. We also
did a comparison of the number of probes in the table depending on the load factor, as well
as dependency of running time and load factor.

2 Theoretical background

We begin with a brief theoretical overview of the hash functions and collisions resolution
methods used.

2.1 Hash functions

Formally, a hash function is a function that maps a large universe of keys U = 0, 1, . . . , u to
a smaller set of numbers T = 0, 1, . . . ,m. Because a hash functions lies on critical paths in
a hash map, it needs to provide low latency. Thus, we only use multiplication hashing and
tabulation hashing.

Let p be a large prime number such that p ≥ u, m be the size of the table, and let a and b
be random numbers such that 0 < a < p and 0 ≤ b < p. Multiplication function h is defined
as:

h(x) = [(ax+ b) mod p] mod m.

Simple tabulation hashing treats key x as an array of bytes x1, x2, . . . xc. We pregenerate a
matrix of random numbers and use it to calculate the hash function:

h(x) = T1, x1 ⊕ T2, x2 ⊕ . . .⊕ Tc, xc

2.2 Collision resolution

Since a larger set is mapped into smaller one, due to the Pigeon Hole principle, it is un-
avoidable to have collisions, i.e. two keys mapped to the same bucket. There are two ways
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to resolve collisions: chaining and open addressing. With chaining, every bucket of the hash
table is the head of a linked list. In case of collisions, an element is simply appended to a
linked list. While simple to implement, this approach has the worst-case lookup time of O(n)
(where n is the number of elements in the hash map), which happens when all elements hash
to the same bucket. On average, if all the slots are equally likely to be filled, it has O(α)
lookup time where α is a load factor. In case of few collisions, chaining is acceptable because
the chains are not very long, so both inserts and lookups run in approximately constant
time. However, elements in linked lists are not linearly placed in RAM, which results in
many cache-misses and performance degradation.

In open addressing, a hash table is probed in a certain pattern until an empty slot is found.
All of the methods we examine are based on open addressing.

2.2.1 Linear and quadratic probing

The most obvious approach to open addressing is linear probing. If h is the original hash
bucket, we probe consecutive buckets in linear order: h, h + 1, h + 2, . . . , h + i. Another
approach is quadratic probing, where we pick two constants, c1 and c2 (in practice, they are
often 1/2) and the probe sequence becomes: h, h+c1·1+c2·12, h+c1·2+c2·22, . . . h+c1·i+c2·i2.

2.2.2 Cuckoo hashing

Cuckoo hashing uses d tables of size m/d each, instead of one of size d. Each hash table
is associated with a different hash function. On insert, we try to insert the element in the
first table. If the bucket is not empty, we take it out and insert into the next table. We
continue this process until we insert an element into an empty slot or until we reach a cycle.
In the latter case, we generate new hash functions for each of the tables and rebuild tables
accordingly. Table rebuilding is a costly operation, but the probability of it happening is
low.

2.2.3 Hopscotch hashing

Hopscotch hashing is an open-addressed hash table with a modified linear probing. It was
proposed by Herlihy, Shavit and Tzafrir in 2008 [2]. The idea is to keep items not more
than H buckets away (in the H-neighborhood) from their originally assigned buckets. H is
a predetermined constant, which in practice is log u, which means 32 or 64. This yields good
cache locality, since the entire neighborhood can fit into just a few cache lines (usually, not
more than 3).

On inserts, if the probed bucket h is full, we do linear probing until we reach an empty
bucket bi. If it is more than H slots away, we rearrange data so the empty slot gets closer
to h. We first find a key from [bi −H + 1, bi] which guarantees that moving that key to bi
does not break H-proximity invariant. After the move, we have an empty slot closer to h.
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Figure 1: Hopscotch hashing diagram

We repeat this until the empty slot is in [h, h+H − 1]. The table never needs to be resized
because the probability of not being able to create an empty slot within H from the desired
bucket is very low and happens only at extremely high loads (> 95% for H = 64).

3 The Main Benchmark

In order to measure the running time, we used a random array containing 900, 000 elements.
We inserted them into a hash table of size 1M which gave the load factor α = 0.9 for our
tables (the built-in hash tables automatically resize). We did not resize the hash tables in
order to analyze the behavior under high loads. The inserts were followed by 9M reads,
where we requested random permutations of the inserted arrays. We run the benchmarks on
a 12-core Intel Xeon X5650 CPU running at 2.67GHz with a 12MB cache. Figure 2 shows
the running times and the number of cache references per query and Figure 3 presents the
number of cache misses per query.
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Figure 2
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Figure 3

4 Discussion

Our experiments show that theoretical analysis is not sufficient to predict algorithm’s be-
havior in practice. In particular, standard running time analysis does not take into account
cache behavior, which has significant impact on performance.

The first thing we noticed is that the choice of a hash function does not significantly affect
the number of probes or the running time - multiplication hashing is about 10% faster than
tabulation hashing. This is expected because tabulation hashing for 64-bit keys requires 8
iterations of a loop to xor all intermediate hashes. Although bitwise operations used for
dividing the key and xor -ing are fast, repeating them numerous times is still slower than
multiplication hashing.

Another interesting observation is the overall running time. Our functions have almost ex-
clusively outperfomed the standard hashing implementations. One of the reasons is that the
standard libraries are templatized and optimized to work well in a general case, while we
specifically hash integers so our functions avoid certain templates overhead. Although the
C++ standard does not explicitily specify the implementation of hash maps, we believe that
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chaining is the most popular implementation.

Let us analyze the collision resolution methods one by one. Graph 4 and 5 show the depen-
dency between the running time and number of probes versus the load. As expected, linear
probing needs to do more probes than the other functions due to long, continuous sequences
of filled buckets. However, the running time of linear hashing is among the best out of all
the algorithms. This is because consecutive probes lie on the same cache line. Cache misses
are very expensive so minimizing them has significantly improved the running time.

Quadratic probing performs similarly linear probing. Expectedly, it has fewer probes, but
its running time is about the same. On one side, the sequence in which we probe makes it
possible to avoid long series. On the other side, more cache lines are needed. Since we do
not have many probes before we find an empty slot, this is still a relatively small offset with
respect to h, and we need just a few lines of cache.

Cuckoo hashing has shown a very poor performance. Cuckoo with tabulation had by far the
worst running time, while cuckoo with multiplication was on average 2-3 times slower than
the rest of our implementations. It did have a very small number of probes per operation,
but it was very unstable in a sense that its performance was highly dependant on a ”good”
choice of a hash function (notice the re-hashing jumps around the load factor of 10% and
75% on the figure 5). Also, jumping between the tables means large jumps in memory.
Therefore, there are significantly more cache references (and misses) than for the any other
algorithm.

In our experiments, the hopscotch hashing was about as good as the linear probing. Because
all the probes are localized, cache is heavily utilized. Timewise, this makes up for the higher
number of probes.

We tested all of our implementations without resizing the hash table, so we can test them
at high loads. We could achieve good performance up to α = 90% where α is the load
factor. Going beyond that point is almost impossible. For hopscotch, if the table is almost
completely full, there are buckets that do not have an empty slots anywhere nearby, so it is
not possible to shift empty buckets into initial neighborhoods. For cuckoo hashing, once the
load gets above 90%, cycles happen very often during rehashing, so the performance drops
to almost zero.

5 Conclusion

With all the analysis, we can conclude that hopscotch hashing is the best and safest choice
for a practical implementation of a hash map. It certainly outperforms cuckoo hashing and
quadratic probing, mostly due to high cache hit-rate. Linear probing, although a tempting
choice, carries a risk of a slowdown in long-term real-world test scenarios, due to deletions
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and contamination. Hopscotch is also relatively straightforward to implement (on par with
linear probing) and has a potential to perform well in multithreaded environment [2].
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Figure 4
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Figure 5
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Figure 6: Linear probing
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Figure 7: Quadratic probing
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Figure 8: Hopscotch hashing
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Figure 9: Cuckoo hashing
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