
PARELLIZATION OF DIJKSTRA’S ALGORITHM:
COMPARISON OF VARIOUS PRIORITY QUEUES

WIKTOR JAKUBIUK, KESHAV PURANMALKA

1. Introduction

Dijkstra’s algorithm solves the single-sourced shorest path problem
on a weighted graph in O(m + n log n) time on a single processor us-
ing an efficient priority queue (such as Fibonacci heap). Here, m is
the number of edges in a graph and n is the number of vertices, and
there are O(m) DECREASE-KEY operations and O(n) INSERT and
EXTRACT-MIN operations made on the priority queue.

The priority queues that we will test are Fibonacci heaps, Binomial
Heaps, and Relaxed heaps. Fibonacci heaps are generally the queues
used with Dijkstra’s algorithm, but its performance doesn’t increase
as well as we might like with paralellization because the time bounds
for Fibonacci heaps are amortized, and when we split up a task over
many processors, one processor can finish much later than the others,
leaving the others idle. Binomial heaps offer worse time bounds than
Fibonacci heaps but offer guaranteed time bounds, so they parallelize
well. Relaxed heaps, a modification of Binomial heaps, offer the same
expected time bounds as Fibonacci heaps and also offer better worst-
case time bounds, so they also paralellize well (in theory). We plan
on putting this theory to test. To the best of our knowledge, this
comparison has not been done in parallel settings.

Our goal in this paper is to explore how we can improve Dijkstra’s
runtime using modern hardware with more than one processor. In
particular, we will explore how to parallelize Dijkstra’s algorithm for p
processors and discuss data structures we can use in the parallel version
of Dijkstra’s algorithm. Finally, we will compare these data structures
in real-life performance tests on modern processors.

2. Description of Data Structures

Before we discuss how to parellalize Dijkstra’s algorithm, we will
first discuss three implementations of priority queues, a data structure
that is required for use in Dijkstra’s algorithm. The first such priority

Date: December 14, 2011.
1



2 WIKTOR JAKUBIUK, KESHAV PURANMALKA

queue we will discuss is a Fibonacci Heap. We will assume that the
reader is familiar with with the details of how a Fibonacci Heap work,
but we will introduce the data structure at a high level. The second
data structure that we will introduce is a Binomial Heap, a data struc-
ture that has some similarities to a Fibonacci Heap. Finally, we will
introduce Relaxed Heap, a data structure that is a modified version of
the Binomial Heap.

2.1. Fibonacci Heap. In this section, we will discuss the key prop-
erties of a Fibonacci Heap. A Fibonacci Heap is simply a set of Heap
Ordered Trees, as described in [3], such that every node’s key is smaller
than or equal to it’s children’s key (heap-order property). Furthermore,
Fibonacci Heaps are both lenient and lazy. They are lenient in the sense
that they allow some properties (such as a degree r node must have
r − 1 children) to be broken. Furthermore, they are lazy because they
avoid current work by delaying the necessary work to the future.

Using amortized analysis, we can show that Fibonacci heaps can
perform the DECREASE-KEY and INSERT operations in O(1) time,
and can perform the EXTRACT-MIN operation in O(log n) time. It
is important to note, however, that the analysis is amortized, and that
it can be the case that certain operations take Ω(n) time in the worst
case. In fact, it is even possible to construct a Heap Ordered Tree in a
Fibonacci heap of height Ω(n).

2.2. Binomial Heap. In this section, we will describe how Binomial
Heap works [1]. Before introducing Binomial Heaps, we will introduce
one of its components, a Binomial Tree. A Binomial Tree is similar
to the heap-ordered-trees in Fibonacci Heaps in the sense that every
node’s key is smaller than or equal to its children’s key (heap-order
property). We can then define a Binomial Tree recursively using ranks
and the following rules:

(1) A node in a Binomial Tree cannot have a negative rank.
(2) A node of rank 0 in a Binomial Tree has no children.
(3) A node of rank r + 1 in a Binomial Tree has exactly one child

of rank r, one child of rank r − 1, one child of rank r − 2, one
child of rank r − 3 ... and one child of rank 0.

(4) A Binomial Tree of rank r has a node of rank r as its root.

These properties are perhaps best illustrated by a diagram:



PARELLIZATION OF DIJKSTRA’S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES3

We can see that the left-most child of the rank 1 node is an rank 0
Tree, the left most child of an rank 2 node is an rank 1 node, and so
on. The second to left most child is simply one rank less, and the one
after that is one rank lesser.

Note that because the binomial tree is defined recursively in this
manner, it is easy to see that a binomial tree of rank r has exactly 2r

total nodes in the tree. Also note that in the rest of this paper, we will
use Tr to denote a binomial tree of rank r and nr to denote a node of
rank r in a binomial tree.

Using binomial trees, we can build a data structure called binomial
heap. This data structure ensures that all of our desired operations,
INSERT, DECREASE-KEY, and EXTRACT-MIN have a worst-case
running time of O(log n). A binomial heap is just a set of binomial trees
with the property that this set can only have one binary tree of any
rank. This is unlike the “lazy” Fibonacci Heaps, where this property
is not guaranteed until after an EXTRACT-MIN step.

In fact, in a Binomial Heap, if we know how many elements are in
this binomial heap, we can determine exactly which binomial trees are
present in the binomial heap. This is because of the property that a
binomial tree of rank i has exactly 2i children, so the binary represen-
tation of the number of nodes in a binomial heap exactly corresponds



4 WIKTOR JAKUBIUK, KESHAV PURANMALKA

to which binomial trees are present in the heap. It is also easy to see
that the largest possible rank of any tree in a binomial heap is dlog ne.

Now, we will describe the operations required by Dijkstra’s algo-
rithm. Before we do that however, we will first describe an operation
called MERGE, which the other operations will require.

The MERGE operation will take two binomial heaps and merge them
into a single binomial heap. We proceed in increasing rank of the trees.
If two roots have to the same rank r, we will combine the trees by
making the tree with the larger key a child of the tree with the smaller
key to make a tree of rank r + 1. Note that we only do the combining
step once per rank (because there are at most originally 2 trees of
every rank, and we produce at most 1 additional tree of that rank),
and because there can be at most O(log n) ranks, and because each
combining step takes O(1), the MERGE operations runs in O(log n)
time.

The INSERT operation will create a new binomial heap with one
node with the value we are inserting. Then, it will MERGE that bino-
mial heap with the binomial heap already present. This operation will
take O(1) to create the new binomial heap plus the time for MERGE,
so it will take a worst-case O(log n) time to complete.

The EXTRACT-MIN operation will first go through the list of root
nodes to find the one with the minimum key. It will then remove that
node from the root list and make all of its children roots in a new
binomial heap. Then it will MERGE the two binomial heaps. This
operation also takes O(log n) time because going through the roots
and finding the min takes O(log n) time, removing it and making its
children a new heap takes O(log n) time, and merging the two heaps
takes O(log n) time.

The DECREASE-KEY operation will do the following: if the node
that is being decreased is a root node, nothing will happen. If it is not
the root, it will check if the node’s parent is now greater than the node
being changed. If it is, it will swap the two. Then it will check again
to see if the node’s parent is greater than the node and again swap the
two if it is. It will repeat this process until either the node is a root
node, or until its parent is smaller than it is. The DECREASE-KEY
operation also takes O(log n) time because there are at most O(log n)
levels in any Binomial Tree with at most n nodes.

Note that the running times for a Binomial Heap for all operations
are strictly O(log n) time; that is, there is no single time that an op-
eration could take more than O(log n) time in the worst case, which is
different from Fibonacci Heaps because some operations in Fibonacci
Heaps could take worst-case Ω(n) time.



PARELLIZATION OF DIJKSTRA’S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES5

2.3. Relaxed Heap. Relaxed heaps were first introduced by Tarjan
et. al [2] in 1988 to allow efficient implementation of Dijkstra algo-
rithm on p processors. Relaxed heaps are similar in design to binomial
heaps, but, at the cost of “relaxation” of the heap-order property, they
achieve a better worst-case running time for DECREASE-KEY, while
maintaining the same expected running times as Fibonacci heaps for
all operations. On the other hand, they are more structured in terms
of internal structures than Fibonacci heaps.

There exist two main variation of Relaxed Heaps: rank-relaxed heaps
and run-relaxed heaps. Rank-Delaxed Heaps provide EXTRACT-MIN,
and INSERT in O(log n), while DECREASE-KEY runs in O(1) amor-
tized time and O(log n) worst-case time. Run-relaxed heaps provide
O(1) worst-case running time for DECREASE-KEY. In this paper
and the successive practical experiments, we are going to use a Rank-
Relaxed Heap, which we will simply refer to as Relaxed Heap.

Similarly to Binomial Heap, Relaxed Heap keeps an ordered collec-
tion of R relaxed-binomial heaps of ranks 0, 1, ..., R − 1. Additionally
each node q has an associated rank, rank(q), which is the same as the
rank in a Binomial Heap. Some nodes are distinguished as active. Let
c be a node and p be its parent in the collection of binomial heaps. c
is active if and only if key(p) > key(c), that is, when the heap-order
property is broken.

Similarly to Binomial Trees in Binomial Heaps, each node of rank r
in a Binomial Tree in a Relaxed Heap preserves the order of its r − 1
children. To ensure efficient implementation, children of a node are
represented in a child-sibling doubly-linked list, with the last sibling
having the highest rank (r − 1) and the first child having rank 0. In
the following analysis we refer the the right-most child with the highest
rank as a last child.

There are two crucial invariants preserved by relaxed-heaps:

(1) For any rank r, there is at most one active node of rank r.
(2) Any active node is a last child.

Since there are at most log n different ranks, there are at most log n
active nodes. For each rank r, relaxed-heap keeps a pointer to the
active node of rank r, visually:



6 WIKTOR JAKUBIUK, KESHAV PURANMALKA

The INSERT operation on relaxed-heap works analogically to the
INSERT on Binomial-Heap, by creating a binomial tree T0 of 1 element,
inserting the tree to the root list (and possibly consecutively merging,
similarly to Binomial Heaps). Insert runs in O(log n) worst case.

In order for DECREASE-KEY(q, v) to achieve O(1) expect running
time, relaxed-heap may violate the heap-order property by marking
q as an active node. Let p = parent(q). If the newly set key v >
key(p), then clearly heap-order property is not violated and there is
nothing to do. If, v < key(p), then x needs to be marked as active,
which might violate invariant (1) or invariant (2) (or both). There
are three main transformation procedures which restore the invariants,
depending on the structure of node p’s immediate neighborhood and
the broken invariants.

Lets first define two helper functions used by the transformation.
Also, let p(r) indicate that node p has a rank r (that is, p is a root of
a binomial heap of rank r).

CLEAN-UP(x):
Let p, x, p′ and x′ be nodes as in figure 3 (p =parent(x), p′ =right-

sibling(x), x′ =last(p′). If after a series of transformations x(r) becomes
active, then due to invariant (1) x′(r) cannot be active, so we can swap
x and x′ (since rank(x) = rank(x′)), which (locally) restores invariant
(2), that is, the active node x becomes the last child of a′ (as will later
be shown, due to other constraints, CLEAN-UP does not introduce
other invariants violations). Runs in O(1).



PARELLIZATION OF DIJKSTRA’S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES7

Figure 3a - before CLEAN-UP(x), Figure 3b - after CLEAN-UP(x).

COMBINE(p, q):
Merge two Binomial Trees p(r) and q(r) together (as in regular Binomial-

Tree merge) and run CLEAN-UP on the tree merged as a sub-tree of
the new root. Also runs in O(1).

Lets now describe the possible invariants violation scenarios and heap
transformations reversing them. The transformations are applied re-
cursively after each DECREASE-KEY(q, v), until no further violation
exists. Each of these transformations takes O(1) time, as they only
operate on pointers to child, parent, sibling. etc.

CASE 1: PAIR TRANSFORMATION
Occurs when q(r) becomes active and there already exists an active

node q′(r) of rank r and both q(r) and q′(r) are last children. Let p, p′

and g, g′ be corresponding parents and grandparents (respectively) as
in figure 4. Pair transformation works as follows:

(1) Cut q and q′. Since both are last children, this decreases p and
p′ ranks by 1 (p(r), p′(r)).

(2) Without loss of generality, assume key(p) ≤ key(p′) and
COMBINE(p, p′), this increases p′ rank by 1 (p′(r+1)).

(3) Let Q = COMBINE(q, q′). The rank of Q becomes r+ 1, make
it the child of g′.



8 WIKTOR JAKUBIUK, KESHAV PURANMALKA

Because both q and q′ were initially active, step 3 decreases the total
number of active nodes by at least 1. Node Q might or might not be
active at this point. If it is and if any of the invariants are violated,
recursively apply this set of transformations on Q.

figure 4. pair transformation
a) before pair transformation, b) after pair transformation

CASE 2: ACTIVE SIBLING TRANSFORMATION
Occurs when q(r) becomes active while its right sibling s(r+1) is al-

ready active. Due to invariant (2), s must be the last child of p, so
p must have a rank of r + 2 (see figure 5). The steps taken in active
sibling transformation are as follows:

(1) Cut q(r) and s(r+1), p has now rank r.
(2) R = COMBINE(q(r), p(r)), R has rank r + 1. R is not active.
(3) W = COMBINE(R(r+1), s(r+1)). W has rank r + 2, might be

active.
(4) Make W the child of g (replaces the previous p(r+2)).



PARELLIZATION OF DIJKSTRA’S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES9

figure 5 - active sibling transformation
a) before b) after active sibling transformation.

Notice that in active-sibling transformation, q′(r), a node that had
been active before p(r) became active, is not affected at all (it does
even have to exist!). The transformation decreases the number of ac-
tive nodes by at least 1.

CASE 3: INACTIVE SIBLING TRANSFORMATION
Let q(r) be the just activated node, s(r+1) be its right sibling and c(r)

be the last child of s. If s is not active we cannot apply active-sibling
transformation. Depending if c is active, there are two cases:

Case 1 - c is active (see figure 6):

(1) Because of q and c are active and have the same rank, apply
PAIR transformation on q and c. This will in effect merge q
and c together into R(r+1) and make it a right sibling of p.



10 WIKTOR JAKUBIUK, KESHAV PURANMALKA

figure 6 - inactive sibling transformation - case 1

Case 2 - c is inactive (see figure 7):

(1) Do CLEAN-UP(q). This effectively swaps s, c and q. Notice
that because c was inactive (that is, key(c) ≥ key(s)), both s
and c after transformation are inactive.

(2) If q is still active after step 1, because it is now the last child
of c, a regular PAIR transformation can be used on q to restore
the invariants.

figure 7 - inactive sibling transformation - case 2

Case 1 of Inactive-sibling transformation decreases the total number
of active nodes by 1. Case 2 does not, however both cases restores
invariant (2) for rank r.

Let α be the total number of active nodes. Each DECREASE-
KEY operation can increase α by at most 1. However, after each
DECREASE-KEY comes a series of transformation. Each transfor-
mation either decreases α, or, does not decrease α, which means it is
the final transformation in the series. α can never go below 0, so the
series of m DECREASE-KEY runs in O(m) time, therefore a single
DECREASE-KEY runs in O(1) amortized time. Since there are at
most log n different ranks, in the worst case this takes O(log n).

3. Parallel Dijkstra’s

In this section, we will discuss how to make Dijkstra’s algorithm
into a parallel algorithm and also how the priority queues mentioned
in Section II relate to the parallel algorithm.

We will assume that the reader is familiar with the traditional version
of Dijkstra’s algorithm run on a single processor. In particular, we
will assume that the reader is familiar with the basic greedy steps of



PARELLIZATION OF DIJKSTRA’S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES11

Dijkstra’s algorithm. Dijkstra’s algorithm initially assigns a distance
of infinity to all vertices from the source and a distance of 0 to the
source. It then picks the best vertex not yet “finalized” and finalizes
the next best vertex, and updates the best known path to the adjacent
vertices of the last finalized vertex, and then finalizes the next vertex,
and so on. We will formalize this as follows:

Suppose we are given a graph G with vertices V and edges E, with
a source s, and we want to find the distance of the shortest path from
s to every other vertex. Then, the algorithm proceeds as follows:

(1) Initialize a set S to store finalized vertices. Let S be initially
empty.

(2) Initialize a distance matrix D, where D[v] represents the length
of the shortest path from s to v. Let D[s] = 0 and D[v] = ∞
for v not equal to s initially.

(3) Pick vertex v with smallest distance in D not in S. Look at v’s
adjacent vertices and update their distances in D. Add v to S
and repeat until every vertex is in S.

The crucial step in Dijkstra’s algorithm is step 3, where we are pick-
ing the next best vertex, updating a distance matrix, and then again
picking the next best vertex. It is, in fact, this step, that gains the
most from parallelization. It is exactly here where Fibonacci heaps fail
in parallel efficiency, and the introduction of new data structures are
necessary.

We split up the algorithm by splitting up the priority queue in step
3 into p processors, so each of the processors holds a priority queue of
size n/p. Because every processor must be synchronized (they must
be at the same iteration), and because Fibonacci Heaps only obtain
amortized time bounds, in many cases, some processors are left waiting
for other processors to finish, and a lot of processor time is left idling.
However, with Relaxed Heaps, because the worst case time bounds are
lower, this has smaller impact on the performance, and much less time
is left waiting around for all processors to finish an iteration of step 3.

4. Setup of the experiment

We have implemented Fibonacci, Binomial and Relaxed heaps in
Java using the Oracle’s 64-bit JVM 1.6.0.29 with the original Java’s
threading library. We run our programs on a 64-bit, 4-core, 1.7GHz
Intel i5 processor with 3MB of L3 cache and 8GB of RAM. We have
implemented a serial Dijkstra algorithm based on our Fibonacci heap
and three parallel Dijkstra algorithms with Fibonacci, Binomial and
Relaxed heaps as their internal priority queues.



12 WIKTOR JAKUBIUK, KESHAV PURANMALKA

There are three input test cases on which we have tested our im-
plementations and which we consider be be representative and cover
multiple use cases. n is the number of nodes in a graph and d is average
degree of a node:

(1) Small n (n = 100, 000), small d (d = log n = 16).
(2) Big n (n = 108), small d (d = log n 27).
(3) Big n (n = 108), big d (d = 10

√
n = 105).

The graphs were generated randomly, with small variation of edges’
lengths. All of our test cases fit into the test computer’s RAM and we
have made our best effort to implement the data structures in the most
efficient way.

5. Results

With small n and small d, we got the following results:

Note that for the serial case, we actually did not increase the num-
ber of processors. The results show that as we increase the number
of processors, the parallel implementations actually get worse. This
is probably because the overhead to maintain parallelization is much
larger than the benefits we receive for a graph this small.

With large n and small d, we got the following results:



PARELLIZATION OF DIJKSTRA’S ALGORITHM: COMPARISON OF VARIOUS PRIORITY QUEUES13

Note that we scaled the time so that the time taken for the serial case
is the same as in the small graph so its easier to compare results. The
results show that initially, with no parallization, Fibonacci heaps out-
perform relaxed heaps, probably due to a higher overhead for relaxed
heaps. However, as we increase p, relaxed heaps start to outperform
Fibonacci heaps as expected. Eventually, the overhead for maintaining
higher p’s take over and as we increase p, the performance actually
gets worse. This is likely because we only have 4 cores, and we need
at least one thread to run the main algorithm and one core for each of
the paralellizations.

With large n and large d, we got the following results:



14 WIKTOR JAKUBIUK, KESHAV PURANMALKA

In this case, the gains from parallelization is predictably greater, and
we don’t yet see the deterioration as we increase p.

6. Summary

Due to an increase in parallelization of modern hardware, it is ex-
pected that parallel algorithms will play increasingly more important
role in modern computing. Shortest path algorithms, such as the Dijk-
stra algorithm, play an important role in many practical applications
and optimizing it for multiple cores should bring increasingly more
benefits. We have shown how to transform the original Dijkstra’s al-
gorithm to a parallel version. Furthermore, as our experiment have
demonstrated, using Relaxed heaps as priority queues in the parallel
version offers an improvement over the traditional Fibonacci heaps.

References

[1] Vuillemin, Jean. “A data structure for manipulating priority queues”, Commu-
nications of the ACM. Vol. 21 Issue 4 (1978): pp. 309-315.

[2] Driscoll, Harold N. Gabow, Ruth Shrairman and Robert E. Tarjan. “Relaxed
heaps: an alternative to Fibonacci heaps with applications to parallel computa-
tion”, ACM Transactions on Graphics. Vol. 31 Issue 11 (1988): pp. 1343-1354.

[3] Cormen, Thomas H., Charles E. Leiserson, Ronald R. Rivest, and Clifford Stein.
Introduction to Algorithms. Cambridge, MA: MIT, 2001. Print.


