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Abstract

By investigating neural connections, neuroscientists try to understand the brain and
reconstruct its connectome. Automated connectome reconstruction from high resolu-
tion electron miscroscopy is a challenging problem, as all neurons and synapses in a
volume have to be detected. A mm3 of a high-resolution brain tissue takes roughly a
petabyte of space that the state-of-the-art pipelines are unable to process to date.

A high-performance, fully automated image processing pipeline is proposed. Using
a combination of image processing and machine learning algorithms (convolutional
neural networks and random forests), the pipeline constructs a 3-dimensional connec-
tome from 2-dimensional cross-sections of a mammal’s brain. The proposed system
achieves a low error rate (comparable with the state-of-the-art) and is capable of
processing volumes of 100’s of gigabytes in size.

The main contributions of this thesis are multiple algorithmic techniques for 2-
dimensional pixel classification of varying accuracy and speed trade-off, as well as a
fast object segmentation algorithm. The majority of the system is parallelized for
multi-core machines, and with minor additional modification is expected to work in
a distributed setting.

Thesis Supervisor: Nir Shavit
Title: Professor
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Chapter 1

Introduction

The study of the nervous system, in particular of the central nervous system, has

been an endeavor for millennia. Yet, despite significant progress in understanding the

anatomy of other body organs, the structure and dynamics of the mammalian brain

remain largely a mystery. Since the time the Ancient Greeks first located sensations

in the brain, philosophers and scientists have been trying to dissect it to find the soul,

understand the human’s behavior, and cure disease.

Through dualism, Descartes suggested that sensations cause the "animal spirit"

to flow from the brain towards the muscles, while an internal pineal gland interacts

with the non-material soul. Later, in the 19𝑡ℎ century, phrenology associated mental

faculties with specific areas in the brain, which resulted in unacceptable racial theories.

Misunderstanding of the brain’s anatomy produced a multitude of biased theories.

Nowadays, while we still do not have the full picture of the brain, we actively

investigate the organ. On the highest level, psychology describes mental functions

and behaviors, treating the brain pretty much as a black box. On the lower level,

neuroscience attempts to describe the internals of this blackbox by analyzing, for

example, blood and oxygen flow through magnetic resonance imaging. Somewhere in

between, neurology attempts to treat the diseases of this misunderstood organ.

We believe that the only method for these three disciplines to succeed is to fully

understand the brain’s first principles. To do this, we attempt to reconstruct a mam-

mal brain’s structure by digital means. Thus, in this work, we provide software tools
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Figure 1-1: Left: an example of a phreneological map. Right: Phineas Gage’s skull.

for fully automated brain analysis, with the ultimate goal of mapping the architecture

of the brain for future digital simulation.

1.1 Early Neuroscience

Modern neuroscience dates back to 1873, when Camillo Golgi invented a silver staining

technique that could be used to visualize nervous tissues under light microscopy at

300 nanometer resolution. Using this technique, Santiago Ramon y Cajal managed to

entirely visualize a number of individual cells and proposed the neuron doctrine that

led then to share the 1906 joint Nobel Prize. Instead of a previously accepted diffuse

network, the doctrine states that the nervous system consists of a large number of

individual cells.

In 1936, Otto Loewi and Henry Dale (shared Nobel Prize 1936) discovered that

information is transmitted between neurons by chemical molecules - neurotransmit-

ters. Acetylocholine is released in one cell and sensed by the other, and the places of

contact are called synapses [38].

On the macro level, in 1894 Edward Flatau created an influential brain Atlas. In

1909, Koribinian Brodmann created the first brain map based on neuronal organiza-

tion, which divides the cerebral cortex into 52 regions, each responsible for certain

14



Figure 1-2: Ramon y Cajal’s drawings. Left: a cell from pigeon cerebellum. Right: a
chick cerebellum.

functions. For example, Brodmann’s areas 44 and 45 are commonly nowadays known

as Broca’s speech and languages areas [22].

The famous case of Phineas Gage, whose skull was pierced by an iron rod leaving

much of the left frontal lobe destroyed, sparked further discussion in neurology and

psychology [46].

Figure 1-3: Left: Flatau’s atlas. Right: Brodmann’s areas

1.2 Brain Structure

While the brain’s connectivity as a whole is still a mystery, individual biological

cell composition is well understood. By the neuron doctrine, the brain is made of

individual cells (neurons) transmitting information to neighboring neurons through

synapses. The neuron’s body contains of the soma cell, from which neurites (den-

15



drites and axons) emanate. Typically, multiple dendrites emanate from the soma,

forming a tree-like structure. The dendrites form the receiving end of the neuron -

each dendrite ends with a synapse called the postsynaptic terminal. A single, long and

cylindrical axon extends from the soma to its final destination, where it branches to

form multiple presynaptic terminals. When a neuron spikes, a directional electric im-

pulse is elicited from the the soma to the presynaptic terminals, which in turn release

neurotransmitter molecules from vesicles, their containers. These molecules then drift

through the synaptic cleft towards the postsynaptic terminal of the receiving neurons.

Some scientific theories argue that a neuron spikes if the sum of the electric poten-

tials generated on postsynaptic terminals is above some threshold. There exist two

broad categories of synapses: excitatory synapses contribute positively to the gener-

ated electric potential, whereas inhibitory synapses contribute negatively, ultimately

attenuating the overall magnitude of excitatory signals.

Figure 1-4: Neuron cell

Lastly, other cell organelles such as mitochondria or cytoplasm appear in mi-

croscopy images. While important for the cell’s functionality, they are of lesser con-

cern in this work.

1.3 Connectome

Just like the term genome represents an organism’s DNA material, the term connec-

tome represents the set of all neuronal connections in the brain [30].

16



As of 2015, the only fully reconstructed nervous system of an animal is that of

Caenorhabditis elegans, a 302-neuron roundworm of 1 mm length [76]. Its manual

reconstruction took 12 years and resulted in a full connectivity map published in

1986. Efforts all around the world are under way to provide other full or partial

connectomes, such as those of the mouse retina [12], or the mouse primary visual

cortex [8]. Janelia Farm Research [35] focuses on flies’ connectomes. The Open

Connectome Project [58] provides public sets of brain tissue data. These electron

microscopy projects should not be confused with the Human Connectome Project by

Massachusetts General Hospital, which reconstructs the brain in vivo via other means

[32].

The term connectomics has been further popularized by Sebastian Seung in [68]

and [69], where he argues that the intellect, personality, or memories are all stored in

the brain’s connections. Seung suggests that by careful full post-mortem deconstruc-

tion and digital reconstruction, we might be able to extend our lives posthumously.

In contrast to Descartes’ dualism, the connectome, by its reweighing, reconnecting,

rewiring and regeneration would become the "soul’s place".

In order to test this thesis, we need to progress from the 302-neuron worm to the

80 billion-neuron human’s brain [62] .

1.4 Imaging at High Resolution

Multiple investigative techniques allow us to see into the brain at various resolutions.

Techniques similar to the Golgi method, allow us to stain an individual neuron and

trace it throughout the tissues, while optogenetics [9, 10] enables us to readily control

a neuron. Unfortunately, such techniques are currently not applicable to all neurons

at once in the connectome. On the other hand, magnetic resonance imaging provides

a very high-level non-invasive measurement of structural connectivity (dMRI ) and

functional connectivity (fMRI ) at millimeter level resolution.

Since the somata have diameters of 50 𝜇m and the axons 30 nm, and there are

billions of them, neither of these techniques work. However, with the latest advances
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in volume electron microscopy, we can achieve both the high-resolution and a sufficient

throughput.

1.4.1 Scanning Techniques

In the base scenario, a single, flat, 2-dimensional tissue needs to be scanned to obtain

a cross section of the brain. The traditional use of an optical microscope limits the

maximum resolution to the wavelength of visible light (300nm to 700nm), and is

insufficient for deciphering a connectome. Techniques such as brainbow imaging [75]

and expansion microscopy [16], [24] significantly improve the resolution, but have not

yet been proven to be applicable for connectomics, because it is not clear how to view

synapses in these techniques. On the other hand, electron microscopy achieves much

higher resolution, since De-Broglie wavelength is much shorter. Transmission Electron

Microscopy (TEM ) beams electrons through the tissue, creating accurate contrast on

the other end, but requires a very thin tissue. Scanning Electron Microscopy (SEM )

scans the surface of the tissue, collects back-scattered electrons, and can thus work

with thicker tissues.

To process a volume image and reconstruct a 3-dimensional structure we repeat-

edly scrap thin slices of the tissue block’s surface, performing serial sectioning. Pop-

ular techniques use a combination of scraping or cutting and scanning the surface

(with SEM), or scanning the shaved off slice (with TEM). The resolution achieved

varies, usually the 𝑥, 𝑦-axis’ (4nm to 20nm) is more accurate than the 𝑧-axis’ (27nm

to 100nm) [45].

1.4.2 Our Microscope

My work is part of the joint effort between the MIT’s Computational Connectomics

Group [14] and Harvard’s Lichtman Lab [47], data comes from the latter’s high-

resolution, high-throughput multibeam scanning electron microscope [23]. By using

61 beams in a single column in parallel, the speed increases by two orders of magnitude

over a single beam, resulting in a detector bandwidth of 1.22 GPixel/s.
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Figure 1-5: Scanning techniques (source: [45])

1.5 Data Analysis

Because the structure of the brain is quite complicated, and a single neuron can

interconnect with thousands of other cells, we need to provide extremely accurate

imaging. At our microscope’s resolution of 4nm x 4nm per pixel, even a 1-mm2

section requires a 62.5GB image [36]. As the microscope automatically cuts 27-nm

thin slices, a 1-mm3 volume will generate roughly 2PB of data. A complete rat cortex

(500mm3) would produce 1 exabyte, while a complete human cortex (1,000 times

that of a rat) would require 1 zetabyte, an amount of data on par with that of all the

information recorded globally today. This is a lot of data to store, not to mention to

process in our lifetimes.

We can avoid the problem of digitally storing such extraordinary amounts of data,

by keeping the tissue slices on a tape, and reconstructing in-real time by re-scanning

the tissues, as desired. However, this increases the demand for high processing rate.

The microscope provides data at a rate of several terabytes per hour, so if the rest

of the digital processing pipeline can match this rate, we would be able to process a

cubic millimeter of brain in about 800 hours.
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Figure 1-6: Beams of our microscope (source: [23])

Thus, our goal is to provide an efficient, fully automated data processing pipeline,

that takes as an input the sets of images scanned by the microscope, and outputs the

connectivity graph (potentially with auxiliary data) in real time. There are multiple

challenges throughout this pipeline: images need to be correctly aligned, objects

segmented, features detected, and, it is estimated, in all of this we should not exceed

about 10,000 instructions per pixel of raw data [36].

1.6 Contributions

The primary objective of my work is to provide an efficient computational process

for 3 sections of the pipeline: probability map generation, oversegmentation and

segmentation. While we briefly cover the entire pipeline (Chapter 3), our work was

not focused on steps immediately following the microscope (ie. image alignment), nor

on steps after agglomeration (Chapter 7). Our main contributions to the project are:

1. Probability map generation using convolutional neural networks (CNNs), as

well as ensembles of CNNs and random forests (Chapter 5).

2. Fast oversegmentation algorithm, using watershed (Chapter 6).
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Figure 1-7: Output grid of our microscope (source: [23])

3. MapRecurse, a recursive computational framework (Chapter 9).

The rest of this thesis is constructed as follows: Chapter 2 provides an overview

of related work, Chapter 4 covers the ground truth transformation process, Chapter

7 covers the segmentation step, Chapter 10 provides quantitative and performance

analysis, Chapter 11 discusses further work and challenges ahead, and Chapter 12

concludes.
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Chapter 2

Related work

With a number of international teams working on data processing systems with var-

ious types of microscopy, the software packages are abundant. Some of the pack-

ages help manual human annotators label data sets, some provide fully automated

machine-learning-based functionality, while other combine both approaches. Data

types conversion, machine learning, image visualization are all available in some ca-

pacity, but due to this variety, they do not work well together, are slow (for our data

size), or are designed for a slightly different purpose. In this section, we attempt to

cover the most relevant software packages.

In 2013, the International Symposium on Biomedical Imaging (ISBI) held a com-

petition [33] for 3D segmentation of neurites in electron microscopy images. They

released a training set of 100 grayscale 1024 pixel by 1024 pixel images, with corre-

sponding manually annotated labels (object identifiers). After the submission period,

numerous teams were tested on a similar (but different) testing set. As of 2015, this

data set remains the "gold standard" to measure error rates of processing packages.

Two separate processing pipelines, Gala [57] and Neuroproof [60], both from the

Janelia Farm Research group, ranked highly in this challenge, and thus became the

benchmark for our comparisons. Gala uses Ilastik ([72], [45]) for the initial probability

map generation. RhoANA [41], a newer tool, uses Fusion for segmentation. All four

packages are briefly described below.
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2.1 Ilastik

Ilastik is an open-source desktop software that provide a nice user interface for data

annotation and combines interactive machine learning with active learning. Released

in 2011, it promises a user, even without expertise in image processing, to quickly

perform segmentation and classification. Based on user’s manual segmentation, it

interactively trains a random forest classifier and provides real time feedback. The

classifier can be later exported and used in other data processing pipelines.

While its ability to annotate out-of-memory data sets and the ease of use are

appealing, Ilastik is insufficient for our needs. It is written in Python, and despite

the promise of multi-threading, is a couple orders of magnitude too slow. Its basic

random forest classifier also does not allow us to achieve the desired accuracy.

2.2 GALA

GALA, Graph-based Active Learning of Agglomeration, is a Python library for image

segmentation that makes extensive use of the Python’s scientific stack. GALA works

using a two-step approach: first it trains the classifier on annotated data, and then

uses it to classify new (not annotated) data. As a first step it takes the output

of Ilastik (a pixel probability map) and oversegments the data using the watershed

algorithm from the Python’s SciKit package. Based on the oversegmentation, it builds

a regional adjacency graph (RAG), where supervoxels are represented as nodes, and

the edges have probabilities assigned based on the boundary values. Then, it trains a

random forest classifier on this graph and agglomerates supervoxels based on edges’

probabilities to, ultimately, minimize the variation of information (see Chapter 10)

from the provided ground truth.

The classification step is analogous to the training step: first Ilastik is used to

generate probability maps, then the watershed generates oversegmentation and lastly

the classifier merges adjacent supervoxels.

Similarly to Ilastik, GALA suffers from unacceptable (for our purpose) perfor-
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mance issues and Python’s Global Interpreter Lock prevents it from multi-threading.

Additionally, it suffers from exaggerated memory consumption. It is not uncommon

for the SciKit’s watershed (the middle step) to produce a working set of over 100

times the (uncompressed) input data size.

2.3 Neuroproof

Neuroproof, also developed by the Janelia Farm Research group in parallel to GALA,

offers very similar functionality, but it is written in C++ and thus promises much bet-

ter performance. Specifically, Neuroproof implements the last (agglomeration) step

of GALA using regional adjacency graphs (RAGs), and depending on the options

specified, the OpenCV or Vigra [74] random forest classifiers are used. Using small

sample learning [61] the need for the annotated training size decreased 5 times, while

preserving accuracy. Quality is improved by using context-aware delayed agglomer-

ation [60], where some merge decisions are postponed in order to generate a more

confident boundary prediction.

Overall, the single-threaded performance of Neuroproof is adequate. By the efforts

of my colleague [54] the classification step of this package was parallelized, resulting in

a near-linear multi-core speedup. While the agglomeration performance provides us

with a good starting point to benchmark against, Neuroproof still relies on GALA’s

watershed algorithm, and requires as input probability maps generated by Ilastik.

Thus, as a whole pipeline, it is still not fast enough.

2.4 RhoANA

RhoANA is a segmentation pipeline, that as of 2013, claimed state-of-the art re-

construction performance for data set in the GB-TB range. Similarly to GALA,

first a random forest classifier is trained on interactive sparse user annotations, then

anisotropic smoothing is applied and a Conditional Random Field framework gener-

ates multiple segmentation hypothesis per image slice. By the process of fusion [73],
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these segmentations are then combined into consistent 3D objects. The following six

steps best present the approach:

1. Membrane classification

2. Segmentation

3. Block dicing

4. Window fusion

5. Pairwise matching

6. Local and global remapping

Using RhoANA, a 27,000 𝜇m3 volume of brain tissue has been classified. The

package also contains Mojo, an influential proofreading tool for semi-automated cor-

rection of merge errors. For visualization in our work we use Dojo [29], a web-based

version of Mojo. While Dojo currently does not offer as many capabilities as Mojo,

it is convenient to locate it on our data servers and it minimizes the amount of data

transfer required.
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Chapter 3

Our Segmentation Pipeline

In this chapter we provide a high-level overview of the processing pipeline. As de-

scribed in Chapter 1, the fully automated microscope outputs slices of raw images

at the rate of about a gigapixel per second. In order for data not to accumulate at

an intermediate stage, it is important that each stage not only achieves comparable

throughput, but can also autonomously receive the input from the preceding stage,

and can pass its output to the following stage.

Since we utilize numerous machine learning algorithms, it is also crucial to distin-

guish between the training and the classifying phases at some of the stages. During

the training phase, the machine learning algorithm takes as input a stack of raw

EM images and its corresponding labels (of the same dimension) and outputs a clas-

sifier that minimizes a loss function. In general, we are not particularly concerned

about the total training time (hours or days is acceptable), nor its complexity, as long

as the resulting classifier produces high quality results. However, the classification

performance is crucial - this stage needs to eventually match the throughput of the

microscope (a gigapixel per second).

Due to the knife’s cutting off slices of the block’s surface and the digitization

process of the microscope, the raw images are misaligned, contain noise and various

physical distortions. Thus, the first stage of the pipeline is the image alignment, both

hexagonally on the 𝑥, 𝑦-axis, as well as in the 𝑧-direction. This stage is not the focus

of our work, and we assume that the input EM images are already aligned, but this
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Figure 3-1: Simplified pipeline

is an area of ongoing research (based on [13]) in our lab.

With the images aligned, we generate the pixel probability map for each slice on

the z-index, that is, we binary classify each pixel as a membrane or non-membrane,

and assign probabilities to each class. Thus, a pixel classified as 1 with probability 1

means that we believe it is a cell membrane (boundary), and a pixel classified as 0 with

probability 1 is a non-membrane. This is the core functionality of previously described

Ilastik package. In Chapter 5 we proposed multiple solutions to the probability map

generation.

Once each pixel is assigned a probability in the probability map stack, we proceed

to generate an oversegmentation - the first attempt at merging adjacent pixels into

3D objects called supervoxels. An efficient watershed-based oversegmentation, as well

as alternative techniques, are described in Chapter 6.

With the raw EM images, probability maps and oversegmentation, we proceed to

generate full 3D segmentation - we further merge adjacent supervoxels in the overseg-

mentation to produce biologically consistent objects, corresponding to neurons. As

of this writing, we still use a parallelized version of Neuroproof.

We care less about the physical shape of resulting 3D neurons - our core goal is

to obtain a (directed) graph connectivity between the neurons. In this step, called

skeletonization, we extract the core skeleton of each neuron, and try to connect them

together. Since the pixel accuracy is irrelevant here, the output data set tends to be

much sparser, thus appropriate for permanent storage and further analysis. Skele-

tonization is briefly covered in Chapter 8.

With the results of segmentation or skeletonization, we might notice biological,

or physical discrepancies between the pipeline’s results and our prior expectations,
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suggesting the pipeline produced an error at some point. For example, if a neuron

connects to itself, we have likely made a mistake at some stage, since (most) neu-

rons do not form loops. Thus, in that particular spatial region, the pipeline should

revert and re-run the calculations using a different algorithm. Such a recursive frame-

work, called MapRecurse, is introduced in Chapter 9. At the time of this writing,

it is still not integrated with the whole pipeline, but nonetheless, its functionality is

demonstrated on small problems.

Figure 3-2: Pipeline stages. Left to right: ram EM image, probability map, overseg-
mentation, segmentation.

3.1 Initial Pipeline

When we first started working on the project, we inherited a pipeline heavily-dependent

on GALA, NeuroProof and Ilastik (implicitly). While the intentions to borrow from

the state-of-the-art packages guaranteed matching the correctness metrics, the indi-

vidual stages did not communicate well with each other, were cumbersome to use

or modify, and had a complicated build process. Let it suffice to say that due to a

complicated build process and many dependencies, we had exactly one machine where

the whole pipeline could be executed from the start to the end.

Initially, the pipeline relied on ground truth generated by Ilastik. Since we did

not have the man-hours to manually annotate data sets to generate a new classifier,

for most of the time we relied on 3rd parties to provide us the probability maps. This

soon became a bottle-neck to run various experiments.

Once we had the probability map, we could invoke GALA’s oversegmentation

algorithm, which runs the Python SciKit’s watershed algorithm. Due to its slow
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Figure 3-3: Initial pipeline

implementation, it took on the order of minutes to process a 100 megapixel data

stack. In 8-bit images 1 megapixel takes 1MB of data, but even with this 100MB set

the memory working set was engrieving, over two orders of magnitude bigger than

the input.

With the oversegmentation and the ground truth, we can train NeuroProof’s clas-

sifier, and then run agglomeration. The particular strength of this pipeline was the

parallelized version of Neuroproof, which could take advantage of our multi-core ma-

chines for the agglomeration stage (only classification).

3.2 Modified Pipeline

In the modified pipeline, we first provide new probability map generation algorithms

- variations of convolutional neural networks (CNN), random forests (RF), their en-

sembles, as well as a combinations of RF and CNN algorithms (described in detail

in Chapter 5). Before we can train these machine learning algorithms, we need to
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slightly transform the object ground truth into the boundary ground truth (covered

in Chapter 4).

Once appropriate probability maps are generated, we invoke a C++ implemen-

tation of the watershed algorithm. Its output is (almost) identical to the GALA’s

output, but due to a more problem-specific implementation it performs much better.

Because we are now capable of processing much bigger data sets, these algorithms

operate on flat image (PNG) files, instead of previously used huge individual blobs

(HDF).

As the last step that my work is focused on, we pass the oversegmentation and

the probability map to the parallelized Neuroproof for agglomeration (Chapter 7).

There are other steps that follow agglomeration that are mostly omitted here, such

as biological and statistical analysis of neurons, or skeletonization (briefly covered in

Chapter 8).

A new framework, MapRecurse, is introduced in Chapter 9 as an extension to the

pipeline. Currently, the pipeline is run as a single forward pass from aligned images

to skeletonized output. While the framework is not integrated yet, it would allow

recursive computations and error correction in subvolumes of data in all stages.

Figure 3-4: Modified pipeline
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Chapter 4

Ground Truth Transformation

As the first pre-processing step for the probability map generation training, we need

to transform the ground truth representation. Each pixel in the EM image stack

is classified either as an object with its own label (a positive integer), or as the

extracellular space (with a zero label), if available. However, in order to train the

probability map classifier, we need to provide it with the boundary ground truth -

that is, each pixel in the EM must be classified either as a membrane (value of 1) or

a non-membrane (value of 0).

In one of our approaches, we do this by performing a set of morphological opera-

tions on the ground truth labels. First, we take a 2-dimensional gradient [65] of the

labels, then we apply a quadratic polynomial and a threshold. Then we remove con-

nected components that are too small (area opening) to decrease the amount of noise

(which we assign to annotation errors) and produce the double membrane ground

truth. Thick ground truth is obtained from the double ground truth by dilation

with a 13 pixel by 13 pixel structuring element. This has the effect of covering gaps

in between membranes (extracellular space) with membrane markers. Thin ground

truth is created by morphologically thinning thick ground truth. Lastly, the double

narrow ground truth is obtained by removing interior pixels from the thin ground

truth. While these operations and choosing the right parameters may seem more like

a art than science, we later benchmark these four ground truth transformations to

minimize the error rate.
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Figure 4-1: 1: Labels, 2: thick boundary ground truth, 3: thin boundary ground
truth 4: double boundary ground truth, 5: double narrow boundary ground truth

The primary objective of the project is to execute the pipeline in real-time on

data coming from our high-throughput multi-beam microscope. However, for some

of the experimental work and benchmarking purposes other data sets are used as

well. The ISBI data set consists of two 100MB train and test sets, each as a volume

of 1024px by 1024px by 100 slices. The kasthuri11 data set from OpenConnectome

is a 10752px by 13312px by 1850 slices volume, of total compressed size of 36GB,

or 250GB uncompressed. The P7 data set contains 2514 slices, where each slice is

Algorithm 1 Ground Truth Transformation [MATLAB]
1: procedure TransformGT(𝑙𝑎𝑏𝑒𝑙𝑠)
2: excell ← labels == 0
3: [fx,fy] ← gradient(double(labels));
4: membraneSkeleton ← fx.2+fy.2 > 1/1000;
5: doubles ← bwareaopen(membraneSkeleton, 10);
6: thick ← imdilate(doubles,ones(13,13)) & excell | membrane;
7: thin ← bwmorph(padarray(thick,[1 1 ],true),’thin’,inf);
8: doublesNarrow ← bwmorph(thin,’remove’);
9: end procedure
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created by stitching together 42 (6× 7) patches, each of size 10000px by 10000px, for

the total volume size of 2.7TB (compressed).
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Chapter 5

Probability Map Generation

In this chapter we cover the various efforts we have taken to generate probability

maps. Roughly, the probability map is a pixel map of the EM stack indicating the

probability that a given pixel is a membrane or non-membrane. Since we operate on

8-bit grayscale EM images, we normalize and discretize the real values from [0, 1] to

integers in [0, 256).

It may seem like a straightforward task to perform a number of simple operations

(thresholding, contrasting etc.), or even use the Canny edge detector [5] to trans-

form a raw EM image into the probability map, but this is unfortunately not the

case. The amount of noise prevents these naive techniques from producing accurate

results. In this chapter we cover two machine learning algorithms, random forests

and convolutional neural networks, that perform well on the task.

5.1 Random Forest

A decision classification tree [63] is a function 𝑓𝑡(𝑥) that classifies a sample 𝑥 (in

our case a pixel and its neighborhood) into one of the classes (membrane or non-

membrane). Each node in the tree represents a decision to be made on a particular

feature, edges represent learned probabilities and leaves produce the final classification

labels. To classify a sample, it is enough to traverse the tree from the root to one of

the leaves, following the most locally probable edge at each node.
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Random forests are a combination of decision trees [11], such that each tree de-

pends on the values of a random vector sampled independently and with the same

distribution for all trees in the forest. In essence, it is an ensemble of decision trees

initialized with random features, where the output class is the mode of classes pro-

duced by all trees (for classification) or their mean (for regression). Random forests

tend to decrease decision trees’ overfitting on the training set, as they tend to sacrifice

optimality of an individual tree for an increase in diversity of the ensemble.

Due to its relative simplicity, random forest is a highly efficient machine learning

model. While training still requires many labeled samples and may take time (in our

experience, on the order of hours for a forest of tens of thousands of trees trained on

a 16-core CPU), the classification latency is small, because traversing the tree from

the root to a leaf by making (binary) decisions does not require many instructions.

Figure 5-1: Decision tree, decision forest

5.1.1 Ilastik

Ilastik’s core feature - its pixel classification module - uses a random forest of binary

decision trees. Its main advantage is that it works well with sparse training labels

(probability map ground truths), and there exists a dynamic feedback loop. After

examining the current classification, the user can correct erroneous voxel predictions

by providing more training samples. Thus, by focusing on problematic areas, good

accuracy can be obtained faster than labeling all pixels [42]. Ilastik uses the scikit-

learn’s RandomForestClassifier [67] with 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100 trees. Unfortunately this

method does not produce nearly good enough results, and because scikit-learn is a

high-level, general purpose library written in Python, its performance is inadequate.
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5.1.2 Structured Decision Forest

To work around the problems with Ilastik, we implemented a structured decision for-

est based on [21]. The original implementation obtains performance that is orders of

magnitude faster than many other competing state-of-the-art approaches (in partic-

ular, convolutional neural networks), while also achieving state-of-the-art results on

the NYU Depth and BSD500 Segmentation datasets.

Instead of directly mapping the high-dimensional input space 𝑋 onto the high-

dimensional output space 𝑌 , a structured decision forest introduces a low-dimensional

mid-representation 𝐶, that is sufficient to approximate 𝑌 well. Using randomization

and principal component analysis (PCA), this reduction is fast. In our edge detection

application, the input consists of 32x32 image patches, and the output is 1 to 4 trees

per patch, with 16x16 segmentation masks of 2-pixels wide strides.

We have trained each tree with 0.5𝑀 to 1.5𝑀 sampled patches, where training

of each tree takes about 30 ms and is embarrassingly parallelizable. More impor-

tantly, even with the combination of Matlab and C++ implementations, we achieved

prediction time of about 0.15 seconds per megapixel.

5.2 Convolutional Neural Networks

Artificial neural networks are inspired by the biological structure of the primary

visual cortex, which cascades simple and complex cells. Of particular interests to us

are convolutional neural networks (CNN), where one, or more, intermediate layers are

convolutions. Combining multiple layers, each with relatively simple computations,

results in a deep network that, with a sufficiently large training set, can approximate

any function. While the theoretical concepts for such networks were proposed in 1980s

and 1990s, it was not until late 2000s that the availability of high-performance GPUs

enabled us to train deep enough networks on millions of training samples. As of 2015,

CNNs are the state-of-the-art choice for nearly all computer vision problems. Their

inspiration by the visual cortex and high accuracy on many data sets, make them a

natural choice for our EM images segmentation problem. While this is not the first
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attempt ever to use the CNN [34], we achieved promising results. Our methodology

is described below.

5.2.1 Overview of Deep Neural Networks

A deep neural network (DNN) consists of the input layer, the output layer, and

multiple "hidden" layers of units in between [6]. Each layer takes as the input the

output of the preceding layer, executes its own specific function (usually a combination

of linear and non-linear function), and passes its output to the following layer. The

advantage of a deep network over a shallow network is its ability to compose features

from lower layers, and thus model more complex data with fewer units than would

be required for a similarly performing shallow network. Most DNNs are feedforward

networks - data passes from the input towards the output without cycles, forming a

directed acyclic graph.

Figure 5-2: Deep neural networks

The convolutional layer is the core of the CNN. Each layer consists of a set of

filters (kernels) of small spatial dimensions (usually between 3x3 and 19x19). During

the prediction phase (forward pass), each kernel convolves (slides) across the width

and height of the input image, producing a 2D activation map. The convolution is,

essentially, a discrete dot product of the kernel parameters and the input (in our case,

the "central" pixel and its neighborhood).
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(𝑓 * 𝑔)[𝑛] =
∞∑︁

𝑚=−∞
𝑓 [𝑚]𝑔[𝑛−𝑚] =

∞∑︁
𝑚=−∞

𝑓 [𝑛−𝑚]𝑔[𝑚]

Since multiple kernels are convolved with the input layer, the output consists of

a stack of activation maps. For example, if the input layer is a volume 1024px ×

1024px × 3 (such as a 3-channel RGB image), and the square kernel size is 7, then

the kernel will need to learn 7 × 7 × 3 = 147 weights. Additionally, sometimes we

specify the stride of the layer, which correspond to the number of pixels skipped

during the convolution. If the stride is 1, then we convolve every input pixel, but for

strides 𝑆 > 1, we conolve every 𝑆𝑡ℎ input pixel. Since the kernel is of size > 1, we

may need to pad the input layer to preserve the same dimensions in the output layer.

If the input layer is of size 𝑁 ×𝑁 , the kernel size is 𝐾, padding 𝑃 and the stride 𝑆,

then the output layer will have dimensions:

𝑁𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑁 −𝐾 + 2𝑃

𝑆

Thus, by stacking convolutional layers together, we can reduce the input layer

size, but the number of convolutions (multiplications) is high, and its usually the

most computationally expensive layer.

Figure 5-3: CNN

The pooling layer progressively reduces the dimensions of the input layer, which is

helpful in minimizing the number of parameters and multiplications required through-

out the network, as well as in decreasing random error of the model (overfitting). The

most common pooling function is the max kernel, but averaging or 𝑙2-norm are also
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used. The kernels are usually small and, similarly to the convolutional layer, the stride

is also applied. The most popular variations are of 𝐾 = 2, 𝑆 = 2 and 𝐾 = 3, 𝑆 = 2.

Thus, for the input layer of dimensions 𝑁𝑖𝑛 ×𝑁𝑖𝑛 ×𝐷𝑖𝑛, kernel size 𝐾 and stride 𝑆,

the output has dimensions:

𝑁𝑜𝑢𝑡 =
𝑁𝑖𝑛 −𝐾

𝑆

𝐷𝑜𝑢𝑡 = 𝐷𝑖𝑛

The Rectified Linear Units (ReLU) layer uses a kernel with an activation function

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) to increase the nonlinearity of the convolutional layers. The advan-

tage of this layer is that it is fast (faster than any exponential or sigmoid function)

and does not suffer from the vanishing gradient problem. The alternatives to the max

function are the more computationally intensive sigmoid function 𝑓(𝑥) = (1+ 𝑒−𝑥)−1

and the hyperbolic tangent 𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥).

The normalization layer is useful when other layers use unbounded activation

functions (such as ReLU), as it allows for detection of high-frequency features with

a large response, and it attenuates responses that are uniformly large in a local

neighborhood. Intuitively, it encourages competition for large activations among

nearby group of neurons, thus provides regularization. The output dimensions are

always the same as the input dimensions.

The dropout layer’s main goal is to prevent overfitting [55]. At the training stage,

each kernel is kept with probability 𝑝, or dropped out of the layer with probability

1−𝑝. Usually 𝑝 = 0.5, thus the network size is reduced by half and not all kernels are

trained on the training data, thus avoiding overfitting. It is inspired by random forests

and resembles taking the average from an ensemble of networks, at a much lower cost.

During the test phase, it would be ideal to test all possible dropout configuration to

minimize the loss function, but since there could be exponentially many of them (2𝑛,

where 𝑛 is the number of kernels), we usually approximate the output by taking the

expected value of the kernel, that is, multiplying its output by 𝑝. Thus, although

(implicitly) 2𝑛 network configurations are trained, we only classify on one of them.
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The fully connected layer (also known as the inner product) has full connections

to all activation maps in the previous layer. It simply multiplies the input by a

weight matrix and introduces a bias offset. In some way, the fully connected layer is

equivalent to the convolutional layer. Whereas the convolutional layer is connected

to a local region in the input, the fully connected layer is connected to all inputs.

One can be easily converted into the other.

The loss layer is the last computation used to compute the error of the network.

The most commonly used function is the softmax, defined as:

𝑓(𝑥𝑖) =
𝑒𝑥𝑖∑︀
𝑗 𝑒

𝑥𝑗

where 𝑥𝑖 is an input value. Other loss functions encountered are the sigmoid

cross-entropy and euclidean loss.

The training of artificial neural networks is done with backward propagation of

errors, backpropagation, along with an optimization method, the gradient descent. For

an input 𝑥, upon a full forward propagation through the network, the loss function 𝐿

is computed on the network’s output 𝑦. We would like to learn the weights in each of

the hidden layers, such that they minimize the value of 𝐿(𝑦). By recursively applying

the chain rule, we obtain the ∇𝑓(𝑥) for each of the hidden layers and can correct the

weights associated with each kernel. The initial weights’ values are usually assigned

at random. Depending on the depth and width of the network, we might need a large

number of labeled samples to learn all weights accurately. This process usually takes

a lot of time (on the order of hours, or days) even on powerful GPUs.

5.2.2 Frameworks

As of this writing, there exist three widely popular, open-source, general-purpose

deep neural network frameworks: Theano, Caffe and Torch7 [3]. We evaluated each

of them to determine the best fit for our needs.

Theano is a Python library developed at the University of Montreal - it is a linear

algebra compiler that optimizes a user’s symbolically-specified mathematical com-
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putations to produce low-level implementations [4]. It is straightforward to specify

custom networks and the high-level execution code, but the symbolic logic compiler

is rather complicated, and it is hard to modify its functionality. It is convenient to

be able to run the networks both on the CPU or the GPU, but despite using the

NVIDIA CUDA compiler (nvcc) to optimize the code for the GPU, the classification

phase is too slow.

Caffe is a state-of-the-art C++ library developed by the Berkley Vision and Learn-

ing Center [37]. It is specifically designed for practitioners of machine learning and

computer vision, and provides convenient Python and MATLAB bindings, both for

training and classification. It supports execution both on the CPU and the GPU and

comes with a public repository of networks, called Model Zoo. Additionally it has a

strong support of NVIDIA, which provided its own training package with a convenient

user interface, call DIGITS [20]. Many other libraries, such as Julia’s Mocha, borrow

heavily from Caffe.

Torch7 is a versatile numeric computing framework that extends Lua [17]. By

combining OpenMP, SSE and CUDA implementations, it claims to be the fastest

machine learning library. While it does have the support of Facebook and Google’s

DeepMind, can be parallelized, and in theory can be integrated with C++, it lacks

documentation and support, and because of (relatively) unfamiliar reliance on Lua,

seems the least popular choice.

Upon evaluating these frameworks, as well as considering writing our own from

scratch, we decided to use Caffe as the base for our work.

5.2.3 Networks

Throughout our experiments, we evaluated multiple convolutional neural networks.

While choosing the network layers, their ordering, number of features, or kernel sizes

may sometime look more like an art than science, the following networks are a repre-

sentative sub-sample. See appendix B for a graphical visualization.
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3-layer Network

The first network we experimented with consists of three max-pooling layers (stride

of 2, kernel sizes 4× 4, 4× 4 and 5× 5 respectively) and the softmax loss layer. The

network was implemented in Theano and its author claimed a high accuracy on the

ISBI data set, but we failed to obtain satisfactory results, even after re-implementing

it in Caffe. Thus, the network was abandoned in our further experiments.

N3 Network

The N3 network consists of 14 layers and was first proposed in [66], and later used

for vesicle detection in [59]. It achieved a state-of-the-art error rate on the MNIST

digits data set, and it performed reasonably well (accuracy of 85%) on the ISBI data

set. N3 consists of three sets of convolution, max-pooling and normalization layers,

followed by two fully connected layers. See B-1 for a detailed visualization.

AlexNet Network

The AlexNet network is based on [44] and consists of 18 layers, requiring 650,000

neurons and 60 million paramenters. First, there are two sets of convolutional, nor-

malization and max-pooling layers, followed by three convolutional layers, followed

by a max-pooling layer, followed by three fully connected layers. AlexNet won the

ImageNet LSVRC-2010 contest and achieved a pixel accuracy of 86% on the ISBI

data set. See B-3 for a detailed visualization.

Shallower Networks

We also implemented a number of shallower networks to better understand the im-

portance of the depth of network on its performance. We started with the AlexNet

network and begun removing layers, down to only two layers (convolutional and fully-

connected) in BN2, where the accuracy dropped to 50% (equivalent to a random

guess). Surprisingly, shallower networks did not necessarily mean lower accuracy, or

faster processing time, suggesting that even small changes to the network’s architec-
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Table 5.1: Network Evaluation
Name Training Size Pixel GPU CPU

time (MB) Accuracy Latency (s) Latency (s)
N3 3h 2min 45 81% 3.27 41.53
AlexNet 14 min 80 81% 3.34 37.54
ShortNet1 11 min 225 81% 3.10 83.55
ShortNet2 22 min 150 78% 2.73 58.43
ShortNet3 38 min 630 77% 5.69 222.85
BN1 2 min 0.12 68% 1.79 1.98
BN2 2 min 0.12 50% 1.46 1.36

ture can change its behavior. Of particular interests may be ShortNet1, ShortNet2

and ShortNet3, which achieve pixel accuracy similar to AlexNet, as well as BN1,

consisting of just one layer more than BN2, yet achieving 18% higher accuracy. See

Appendix B for their visualization.

Evaluation

All networks were trained using Caffe with the DIGITS package for visualization.

Our primary concern is the classification time (forward pass latency) on the CPU.

We evaluated both the GPU- and CPU-based implementations of these networks,

but the training phase was executed only on the GPU. See Table 5.1 for an analysis.

Notice that the CPU latency is correlated with the model size, while the GPU latency

is not. Similarly, increasing the classifier size (more neurons, or parameters) does not

imply higher accuracy.

5.2.4 Sliding Window Classification

All of our networks were trained on small, labeled patches. Each 2-dimensional patch

classifies (assigns probability to) exactly one pixel from the training set either as a

membrane or non-membrane. The patch defines a small neighborhood of odd dimen-

sions, between 19px by 19px and 255px by 255px, to ensure that the middle pixel

is unambiguously discriminated. In a single forward pass through the network, we

provide such a neighborhood (most commonly 49px by 49px) and classify the central
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pixel in the output.

However, our EM image slices have dimensions between 1024 px by 1024 px to

16,000 px by 16,000 px, so a single pass of such a network cannot classify each pixel

in the input. Instead, we use the sliding window technique, where a square window

of our network’s input size (ie. 49x49) slides across the entire image. If the network’s

input size is 𝐾 × 𝐾 pixels, and the image size is 𝑁𝑖𝑛𝑝𝑢𝑡 × 𝑁𝑖𝑛𝑝𝑢𝑡, the output image

would have dimensions of 𝑁𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑁𝑖𝑛𝑝𝑢𝑡−𝐾 +1. To avoid this decrease in size, we

pad the image with a border of width ⌊𝐾/2⌋, filled with 0 values, or a mirror of the

image values.

This results in a significant increase in the number of computations: instead of

being forward propagated through the network once, each pixel now contributes to

𝐾2 forward computations.

Figure 5-4: The sliding window approach

5.2.5 Fully Convolutional Networks

This computational blowup quells even the most powerful GPUs. For example, on the

Nvidia Quadro K6000 with 12GB memory, processing a 1024px by 1024px grayscale

image (1MB) with the sliding window of size 𝐾 = 49 and the AlexNet network

takes a staggering 30 minutes (forward propagation only), and clearly is not a viable

approach.
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Looking closer into the computations performed across all (1024 − 𝐾)2 window

positions, we observe that most of them are repeated, or follow a very similar pattern.

Using the dynamic programming technique, we can significantly speed it up, preserve

exactly the same output ([26], [50]) and re-use the same weights from the original

(patch-based) classifiers. Specifically, here is how we optimize the convolutional and

max-pooling layers.

Figure 5-5: Overlapping kernels (green - max-pooling, blue - convolutional) in neigh-
boring sliding windows.

Let 𝐿 + 1 by the number of layers in a network. 𝑙 = 0 is the input map, and the

max-pooling and convolutional layers are indexed 1..𝐿. Let 𝑃0 represent the input

image with one or more input maps (for example, equal to the number of input image’s

channels) of width and height 𝑤0 (for simplicity, we assume they are all square).

If the 𝑙𝑡ℎ layer is a convolution with kernel size 𝑘, then its output 𝑃𝑙 will be a set of

square maps, each of size 𝑤𝑙 = 𝑤𝑙−1−𝑘. In general, |𝑃𝑙| ≠ |𝑃𝑙−1, unless 𝑘 = 1. If the 𝑙𝑡ℎ

layer is a max-pooling layer with kernel size 𝑘, and since max-pooling processes every

input map, we get that |𝑃𝑙| = |𝑃𝑙−1|, and 𝑤𝑙 = 𝑤𝑙−1/𝑘, assuming that 𝑤𝑙 ≡ 0(mod 𝑘).

With a patch-based (window-sliding) approach, we assume that 𝑤0 = 𝑠, the size

of the input patch. Instead, let’s take an input image 𝑠 > 𝑤0. Define 𝐹𝑙 as a set

of fragments, where each fragment 𝑓 (indexed 1..𝐹𝑙) is associated with a set of 𝐼𝑓𝑙

extended maps, each of the same size. Define 𝑠𝑓𝑥,𝑙 and 𝑠𝑓𝑦,𝑙 as the width and height of

the extended map in 𝐼𝑓𝑙 . Thus, for 𝑙 = 0, we get |𝐹0| = 1 and 𝑠1𝑥,0 = 𝑠1𝑦,0 = 𝑠.
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In the convolution layer 𝑙, the number of fragments is the same as in the input,

𝐹𝑙 = 𝐹𝑙−1 and each extended map shrinks by the convolutional kernel size, that is

𝑠𝑓𝑥,𝑙 = 𝑠𝑓𝑥,𝑙−1− 𝑘+1 and 𝑠𝑓𝑦,𝑙 = 𝑠𝑓𝑦,𝑙−1− 𝑘+1. 𝐼𝑓𝑙 is obtained by applying convolutional

kernel to preceding map 𝐼𝑓𝑙−1 in same way as in the window-sliding method.

The max-pooling layer computes the kernel at 𝑘2 offsets for each fragment, thus

𝐹𝑙 = 𝑘2𝐹𝑙−1. Specifically, let 𝐼𝑓𝑙−1 be the input extended map, and 𝑂 = {0, 1, ..., 𝑘 −

1} × {0, 1, ..., 𝑘 − 1} the set of offsets. The for each offset (𝑜𝑥, 𝑜𝑦) ∈ 𝑂, an output

extended map 𝐼𝑓𝑙 is created, such that each of its pixels (𝑥𝑜, 𝑦𝑜) corresponds to the

maximum value of all pixels (𝑥, 𝑦) in 𝐼𝑓𝑙−1:

𝑜𝑥 + 𝑘𝑥𝑜 ≤ 𝑥 ≤ 𝑜𝑥 + 𝑘𝑥𝑜 + 𝑘 − 1

𝑜𝑦 + 𝑘𝑦𝑜 ≤ 𝑦 ≤ 𝑜𝑦 + 𝑘𝑦𝑜 + 𝑘 − 1

While the number of output maps is 𝑘2 times the number of input maps, each

output map’s size decreases by a factor of 𝑘: 𝑠𝑓𝑥,𝑙 = ⌊
𝑠𝑓

′
𝑥,𝑙−1

−𝑜𝑥

𝑘
⌋ and 𝑠𝑓𝑦,𝑙 = ⌊

𝑠𝑓
′

𝑦,𝑙−1
−𝑜𝑦

𝑘
⌋.

Lets compute the theoretical speed up in convolutional layers. Let 𝐶𝑙 be the num-

ber of floating point calculation required per layer 𝑙. In the sliding-window approach,

let |𝑃𝑙| be the total number of maps, 𝑠 the size of the image, 𝑤𝑙 the size of the map,

then:

𝐶𝑙 = 𝑠2 · |𝑃𝑙−1| · |𝑃𝑙| · 𝑤2
𝑙 · 𝑘2

𝑙 · 2

The extra factor of 2 comes from performing one addition and one multiplication

per weight.

In the fully convolutional approach, the number of operations is given by:

𝐶𝑙 = 𝑠𝑥,𝑙 · 𝑠𝑦,𝑙 · |𝑃𝑙−1| · |𝑃𝑙| · 𝐹𝑙 · 𝑘2
𝑙 · 2

The theoretical speedup over the sliding window can be now calculated. Assuming

a 10-layer architecture similar to N3 (see Appendix B, we obtain significant speedup

per layer, see Table 5.2.
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Table 5.2: Theoretical speedup
Layer 𝑠 𝑠𝑙−1 |𝑃𝑙−1| |𝑃𝑙| 𝑤𝑙 𝑘𝑙 𝐹𝑙 window fully speedup

FLOPS ×109 FLOPS ×109
1 512 559 1 48 92 4 1 3408 0.5 7114.8
3 512 279 48 48 42 5 4 53271 35.9 1485.1
5 512 139 48 48 18 4 16 6262 22.8 274.7
7 512 69 48 48 6 4 64 695 22.5 30.9

Experimental speedup

The Caffe library has an implementation of the fully convolutional approach in one

of the experimental branches [49], but we unfortunately did not manage to adopt

it to our production code. Instead, we provide an implementation Julia - a high-

level dynamic, scientific programming language [39]. The implementation is based on

Mocha.jl [52], so the same Caffe models (parameters) can be re-used. Benchmarked

against a pure Julia sliding window approach, the fully convolutional (also pure Julia)

approach achieves almost two-orders of magnitude speedup.

A colleague in our lab implemented this approach in highly-optimized C++ and

managed to compute an entire 1024 x 1024 image in roughly 2 seconds on a multicore

machine (CPU only). That’s an improvement of 900x over the initial (GPU-based)

30-minute running time.

5.3 Combined RF and CNN

Random forest and deep neural network classifiers are not mutually exclusive. In

a recent Microsoft Research publication [43], the random forest was put on top of

the deep neural network obtaining state-of-the-art results on MNIST and ImageNet

data sets. Similarly, due to a significant speed advantage of the random forest ap-

proach (5.1) over the sliding-window convolutional neural network (5.2.4) we also

implemented different combined approaches to take advantage of the best of both

worlds.

The first approach is based on sparse sub-sampling of the CNN. Because the RF

models tend to be orders of magnitude faster, but less accurate, first, the entire
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EM volume is classified with a RF to generate probability maps, effectively creat-

ing 2-dimensional supervoxels. Then a step similar to agglomeration (Chapter 7) is

performed - we iterate over all membranes in the probability map, sample 𝐾 = 1
100

pixels, and re-classify them with a (slow, but more accurate) CNN. After threshold-

ing such sub-sampled membranes, it is decided whether they should stay classified as

membranes, or not (effectively, merging two adjacent supervoxels). This gives us the

effect of correcting the RF with the CNN at the cost of 1
100

of the running time of the

CNN.

The second approach is based on ensembles of probability map predictions (similar

to [48]). Instead of using only one RF model, an ensemble of models is trained with

different starting hyper-parameters. The ensemble’s output can be either averaged,

or further optimized with a (sparse) linear regression. Although running an ensemble

slows down prediction time proportionally to the number of models in the ensemble,

we observed higher accuracy, even for a small ensembles (2-10 models). While our

CNN implementation is too slow for our purposes, in theory, ensembles of CNNs (or

both CNNs and RFs) could also benefit from this approach.

The third approach uses two consecutive RFs, where the second RF takes as its

input the first RF’s output. This resembles a two-layer neural network and has the

effect of correcting the errors generated by the first RF. Interestingly, we observed a

higher pixel-accuracy than by only using the previous two approaches. Furthermore,

all three methods can be combined together, effectively generating a directed acyclic

graph (DAG) of classifiers (see Chapter 9).

5.4 Training Sets

We experimented with multiple training data sets, using different ground truth trans-

formations and pre-processing steps. Table 10.1 shows six data sets generated and

the models that achieved the highest pixel accuracy on each of them, as well as their

training times.

All data sets are generated from the ISBI training set, as its EM and ground
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Table 5.3: Training Data Sets
Data Set Name Best Model Pixel Accuracy Training time
ISBI49 AlexNet 85% 14 min
ISBI256 GoogLeNet 88% 5 hr 48 min
Doubles AlexNet 81% 14 min
ISBI Skewed 60 AlexNet 88% 43 min
ISBI Skewed 70 AlexNet 89% 58 min
ISBI65 N3 85% 15 hr

truth have the same resolution as our microscope. The ISBI49 data set consists of

90, 000 patches, each of size 49px by 49px. There are 60, 000 training patches, 20, 000

validation patches and 10, 000 test patches. Similarly, the ISBI256 set uses patches

of size 256px by 256px, with the same split in between the sets. The Doubles data set

uses 49px by 49px patches with the double membrane ground truth transformation.

The ISBI Skewed 60 uses 200,000 patches of size 49px by 49px, but they are

biased towards membranes. 130, 000 train patches are split with proportions 60% of

membranes and 40% of non-membranes (80,000 : 50,000). Similarly 50, 000 of the

validation patches and 20, 000 of the test patches are biased in the same proportion.

The ISBI Skewed 70 uses 70% to 30% ratio instead. Our intuition to use skewed

data sets was to predict membranes with higher accuracy, at the cost of (potentially)

misclassifying extracellular space or cell’s body as membranes. This has an effect of

creating thicker membranes, thus increasing the split error and decreasing the merge

error, which is desirable.

Lastly, the ISBI65 set is an un-skewed set of 200, 000 patches of dimensions 65px

by 65px (a bigger neighborhood).
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Chapter 6

Oversegmentation

In order to efficiently segment a volume, we first need to perform oversegmentation,

that is, group individual pixels in the volume into supervoxels. The intuition be-

hind the supervoxel primitive (in 2D, superpixel) is to group similar and meaningful

regions together, replace the rigid pixel grid representation and capture image redun-

dancy, such that the complexity of following pipeline stages is reduced [2]. While it

is much easier to segment (or, merge) features computed from irregular supervoxels,

as they are more expressive that a rigid pixel neighborhood, we need to ensure that

no supervoxel straddles more than one atomic region. In particular, it is better in

our case to heavily oversegment an image, thus introduce many split errors, than to

under-segment an image, and merge regions that should not be merged together.

Oversegmentation is a well-studied problem and there exist multiple algorithms

to generate it, such as simple linear iterative clustering (SLIC), watershed or ran-

dom walker [27]. In this chapter, we concentrate on the watershed method, briefly

cover popular implementations and provide our much faster sequential and parallel

implementations.

6.1 Watershed

Watershed is a popular image segmentation technique. We begin with a 3-dimensional

stack of probability maps, where each pixel represents a probability of being a mem-
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brane, scaled and discretized to 8-bit integers, in the range [0, 256). The goal is

to label spatially neighboring pixels into supervoxels of the same (arbitrary) label.

On the high level, watershed considers the input image as a topographic surface and

places water (fluid) sources in regional minima of its relief. Once the entire relief is

flooded from the sources, the borders are put in places (pixels) where different sources

meet. At that time, all points at the surface of a given minimum constitute the catch-

ment basin. Alternatively, one can visualize the watersheding process as continuously

and uniformly increase in fluid level from the minimum value (0 in our case) to the

maximum value (256), until the entire image is covered [51].

Figure 6-1: Watershed flooding

There are other, equivalent, interpretations of the watershed. Intuitively, the

catchment basins define the supervoxels where the fluid "dropping" on a pixel follows

the path to the "nearest" minimum, that is, follows the path of the steepest descent,

thus ultimately reaching a minimum. This was first algorithmically implemented in

[7], and does not produce separating borders (pixel-wide lines between objects). The

alternative approach, with borders, was suggested by [18].

There exists a surprising number of incongruent watershed implementations that

vary by parametric settings. Since we further pass the outcome of our watershed to

NeuroProof, we have to make sure that our implementations are acceptable by that

package. The following section covers two open-source implementations and provides

our own, much faster, implementation.
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Figure 6-2: Left: input probability map. Right: Generated watershed oversegmenta-
tion

6.1.1 GALA’s Implementation

GALA directly uses the Python SciKit’s watershed implementation [40], which in

turns implements [71]. By default, GALA initiates the watersheed seeds ("minima")

by choosing all connected components with pixel value of 0 (from the range 0..255)

of size ≥ 5. In 2D it uses 4-connectivity (a cross), while in 3D uses 6-connectivity.

It also performs a number of general-purpose transformations (ranking the values,

padding the image etc.) for the convenience of implementation and the theoretical a

speed-up. In essence, the core algorithm implements the following:

While this is a widely-used implementation, it is too general-purpose for overseg-

mentation of 8-bit probability maps, and suffers from significant memory overhead and

poor performance (despite being written in Cython and being compiled). While pro-

cessing a 100 megapixel volume (100x1024x1024 8-bit pixels, 100MB uncompressed

in memory), we observed a working memory set of about 140x that size (14GB),

which is unacceptable, not only due to the sheer size, but also because it overfills

CPU caches and decreases performance. Additionally, the processing time was over

2 minutes (single-threaded implementation), which would not scale for our data sets.
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Algorithm 2 GALA’s Watershed
1: procedure GalaWatershed(𝑠𝑒𝑒𝑑𝑠)
2: Mark each seed with a unique label (one per connected component)
3: Initiate queue with these seeds
4: while not queue is empty do
5: 𝑠← queue.pop()
6: for pixel 𝑞 in s’s neighborhood do
7: if 𝑞 not processed yet then
8: marker[𝑞] ← marker[𝑠]
9: enqueue(𝑞, height[𝑞])

10: mark 𝑞 processed
11: end if
12: end for
13: end while
14: end procedure

6.1.2 OpenCV’s Implementation

OpenCV implements a similar queue-based approach to GALA’s, and additionally

marks the output with a pixel-wide boundary around objects, which is not good for

our needs. Despite being written natively in C++, it suffers from similar memory

over-consumption and inefficient cache access patterns. The running time for the 100

megapixel volume is about 110 sec (single threaded).

6.1.3 Serial Implementation

To avoid the memory and speed limitations of GALA, we re-implemented the SciKit

algorithm and introduced four main enhancements: smaller memory footprint, an

efficient processing queue, a decreased number of pre-processing steps, and sequential

file processing.

First, we realized that since our probability maps store 8-bits of information per

pixel, it does not make sense to rank and re-label the entire volume. This saves us

one pass on the entire volume, and removes the need to cast values to 32-bit integers.

Then, we decided to use only three buffers: one 8-bit buffer for the input prob-

ability map, one 32-bit buffer for the output labels and one 64-bit buffer for reverse

indexing into the output buffer, all of the same dimensions as the input volume. Ad-
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ditionally, we re-used the third buffer for the watershed’s processing queue. Each

pixel in the first two buffers is accessed exactly three times (initialization, seed se-

lection, watershed’s queue), while the reverse index is accessed exactly twice (during

initialization and in the queue).

Instead of using a queue or heap of elements with three keys (index, value and

timestamp), which in SciKit takes 128-bits total, we use a single queue built on the

reverse-index buffer. we noticed that the timestamps enqueued per each value are

monotonically increasing, eliminating the need for a general-purpose queue, allowing

us to just use an array. Here’s the queue implementation:

Algorithm 3 Watershed Queue Push
1: procedure WatershedQueuePush(𝑖𝑛𝑑𝑒𝑥, 𝑣𝑎𝑙𝑢𝑒)
2: if value < queue.min_value then
3: queue.min_value ← value
4: indexBuffer[tail[value]] ← index
5: tail[value] += 1
6: end if
7: end procedure

Algorithm 4 Watershed Queue Pop
1: procedure WatershedQueuePop
2: while queue.min_value < 256 do
3: if head[queue.min_value] < tail[queue.min_value] then
4: head[queue.min_value] += 1
5: return indexBuffer[head[queue.min_value] - 1]
6: end if
7: end while
8: return -1 ◁ not found - the queue is empty
9: end procedure

Using this monotonically increasing queue, the memory working set decreased

from 140x to 13x, and the single-threaded running time is about 0.1s per megapixel

of probability maps (including 0.03s spent in I/O), which is on par with our fastest

probability map generate algorithm.
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6.1.4 Parallel Watershed

While the single-core serial implementation’s speed is adequate, there is space for

multi-core parallelization for further speed up. There are two parallelization ap-

proaches.

First, we can split the input volume into sub-volumes of (roughly) the same size

and execute the watershed algorithm as an independent process for each of the sub-

volumes (for example, one process per core). This gives us a theoretical linear speed

up, but due to CPU cache contention does not scale linearly with the number of cores

available. Additionally, this approach increases over-segmentation, as the fluid does

not spill in-between the volumes, thus more split-errors are introduced (but, generally,

no merge-errors should be introduced). We hope that the agglomeration step will be

able to correct for this issue.

The second approach is to actually parallelize the watershed algorithm internally.

In essence, this means we have to introduce a thread-safe queue in place of 6.1.3 and

6.1.3.

6.2 Alternative Approaches

There exist other approaches to generate oversegmentation that we did not evaluate,

but we briefly survey here.

The random walker algorithm ([28], [15]) also begins with a set of seeds, but in-

stead of increasing fluid elevation, calculates probabilities for a random walk. Specif-

ically, the input probability map is modeled as a graph, where each pixel corresponds

to a node connected to other nodes in its (pixel) neighborhood, and each edge is

assigned a probability (as a function of intensity, color etc.). Then, for each pixel,

the probability of a random walk reaching all seeds is calculated, and the seed with

highest probability is chosen as this pixel’s label.

The simple linear iterative clustering (SLIC ) [2] is an adaption of 𝑘-means clus-

tering with two modifications. Firstly, the number of distance calculations is reduced

by limiting the search space. It becomes proportional to the superpixel size, linear
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in the total number of pixels in the input image and independent of the number

of supervoxels. Secondly, the weighted distance function combines both the spatial

proximity and color, giving control over size and compactness of the supervoxels.

6.3 Other Heuristics

We noticed that the 3-dimensional watershed sometimes spills in between the z-index

slices and generates too few objects (under-segments). This is caused by the input

volume anisotropy: pixels on the 𝑥, 𝑦-plane are 4 nm apart, while the 𝑧-index is

separated by 27 nm, resulting in bigger and less-smooth translation of a membrane

between two 𝑧-index slices. This has turned out to be a major problem: the thinner

and more accurate the probability maps are, the more spilling and (ultimately) merge

errors become.

The issue is temporarily fixed with a single post-processing step. The morpholog-

ical operation of closing on the z-axis is performed. The closing of 𝐴 by a structuring

element 𝐵 is defined as dilation of 𝐴 by 𝐵, followed by erosion of the resulting struc-

ture by 𝐵. Our structuring element is a 3-pixel long segment in the 𝑧-direction.

Figure 6-3: Structuring element for z-closing
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Chapter 7

Agglomeration

While the middle step of the pipeline (oversegmentation) provides us with some spatial

information, by itself it is not enough to render the connectivity of neurons. The goal

of agglomeration is to merge adjacent supervoxels generated in oversegmentation, in

a way that resembles neurons’ physical shape. Similarly as in the previous step, we

would like to avoid merge errors at all cost, since splitting an object is hard, while we

we find it acceptable to have a small number of split errors.

Figure 7-1: Left: Oversegmentation. Right: Segmentation

Both GALA and Neuroproof implement essentially the same random forest-based

agglomeration (hierarchical clustering) algorithm [56]. First, they construct a regional
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adjacency graph (RAG) by iterating over all pixels in oversegmentation and creating a

graph node for each unique label, and an edge between different adjacent labels. Then

each edge is assigned a probability of being a valid boundary in the segmentation (a

function of probability map pixel values).

The merging process works in a loop by extracting the edge with lowest prob-

ability from the priority queue and merging the edge’s nodes. Once two nodes are

merged, the values of neighboring edges might have to be re-calculated and the queue

updated. The process repeats until a parametric threshold value is reached. Both

linear procedures have been parallelized by our colleague in [54].

Similarly to using the ensemble of random forest classifiers to generate a proba-

bility map (section 5.3), multiple probability maps can be provided to NeuroProof

to increase the accuracy of agglomeration. By default, the package accepts multiple

channels of class predictions, with channel 0 always treated as the boundary chan-

nel and channel 2 treated as the mitochondria channel (if mitochondria detection is

enabled). Currently there are two probability maps passed to Neuroproof and mi-

tochodria detection is turned off. However, our colleagues are implementing other

biological features that are expected to further improve agglomeration.

As the last phase of the pipeline that still requires high-density input data, ag-

glomeration must be implemented as a distributed process. Watershed-based over-

segmentation can be easily distributed by splitting the input volume into smaller sub-

volumes that fit into memory. For physical objects split on the sub-volume boundary,

this process assigns (at random) different labels to the oversegmentation, effectively

deferring the label-merging process to agglomeration. We do not have a straightfor-

ward solution to this problem. By re-generating some of the original RAGs in two

neighboring sub-volumes, Neuroproof might be able to correctly merge labels. But

this approach has not been evaluated yet.
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Chapter 8

Skeletonization

For the study of neuronal connectivity, we are not directly interested in a pixel-

accurate physical shape of neurons, but rather just their connectivity with synapses.

Ideally, we would like to trace the center lines of each object, an operation called skele-

ton tracing (skeletonization), and thus deduce the connectome. Skeletonization is a

popular research problem, and some solutions for high-accuracy and high-throughput

skeletonizations had already been suggested [31].

A colleague of ours implemented a voxel-based thinning approach based on surface

points [70]. The algorithm satisfies centeredness (skeleton is geometrically centered

within the boundary), preserves connections and topology, stays invariant to shift,

zoom and rotation and aims be as thin as possible (1-voxel). The algorithm defines 38

simple points in a 3-dimensional lattice and proceeds to thin the objects, starting with

the boundaries, such at the simple points (their connectivities) are always preserved.

It runs in linear time (in the number of pixels) and with additional coarsening is

sufficiently fast.
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Figure 8-1: An example of a skeletonized object
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Chapter 9

MapRecurse

Coming into the Connectomics project, the initial goal of our research was to propose

a new, efficient and concurrent computational framework for multicore machines.

However, throughout the challenges encountered, the research focus has significantly

diverted. In this chapter we provide an overview of the developed framework.

Due to the size of the connectome data, computations need to be performed in a

distributed manner, with majority of data residing out of memory. A volume of brain

tissue as well as image segmentation have highly spatial properties, and, because the

brain’s regions differ in their complexity, it is desirable to be able to run different

algorithms on different brain regions.

The framework should support a generic mechanism to split the input volume

into smaller sub-volumes of dynamic size (or complexity), run computations on each

sub-volume, merge back the results and verify that the processes succeeded. If the

verification fails, the framework needs to provide a re-try mechanism.

MapRecurse is heavily based on Google’s MapReduce framework [19]. Since

MapReduce was released in 2004, it has been well tested in practice, with an en-

tire eco-system of frameworks built on top of it [77].

The framework is implemented in C++11 using variadic templates and all its logic

is generated at compile-time with little run-time overhead. It enables recursion in the

map step, in the reduce step, as well as across the entire job. It is currently non-

distributed, but it is easily parallelizable with Cilk [25], assuming that the underlying
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data structures (problem-specific) are thread-safe.

The user can cascade multiple steps of map and reduce functions, and after each

step can also (optionally) specify a verifier. The verifier checks correctness of the

previous step (map or reduce) and directs data forward to the next step if the output

is correct, or sends it back to the previous step, where it is recalculated with a different

algorithm (specified in the variadic template). Additionally, there is the global verifier

that can re-do calculations starting with the first step. This enables the user to create

(limited) computational graphs.

MapRecurse has not yet been adapted to the connectomics pipeline. It was eval-

uated on small example problems: a prime number generator and a BTree creation

and merging logic. It is hoped that it can generalize beyond just the application to

connectome.

Figure 9-1: MapRecurse framework. Top: map phase. Bottom: reduce phase

9.1 Other Frameworks

Janelia Farm Research has recently released Spark utilities for Neuroproof [53]. Spark

is a in-memory computing framework well-suited for distributed machine learning al-

gorithms. The newer version of the packages comes with multiple workflows, such as
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evaluating the similariy between two image segmentations, RAG building and large-

scale image segmentation. Internally it uses Janelia’s DVID (distributed, versioned,

image-oriented dataservice). While the package looks promising, we have not evalu-

ated it in practice yet.

Figure 9-2: Neuroproof’s Spark

The Google Brain team has released Tensorflow as a library for numerical com-

putations using data flow graphs, with a special focus on machine learning. Nodes

in the graph represent mathematical operation, while the graph edges represent the

multidimensional data arrays (tensors) communicated between them [1]. With a

multi-architecture implementation (CPUs and GPUs) and an unrestricted computa-

tional graph, it seems more flexible than MapRecurse.
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Figure 9-3: Tensorflow
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Chapter 10

Evaluation

The performance of our algorithms should be evaluated with the application in mind.

On the lowest pixel accuracy can be used for each pixel classification, and this is the

measure used in training probability map classifiers (RFs and CNNs). However, in

image segmentation we are more concerned with accurate labeling of the entire image

(as compared with the ground truth) rather than individual pixels. Thus, a higher

level measure is more appropriate.

The Rand Index (RI ) is a measure of the similarity of two different clusterings

of a given volume [64]. Consider a lattice defined by the merge-split operation on

clusterings. Let 𝐶 and 𝐶 ′ be the two clusterings, with a function 𝑓 defined on on

them. Let 𝐶 = {𝐶1, 𝐶2, ..., 𝐶𝑘} and 𝑛𝑖 = |𝐶𝑖|. The distance function between two

clusterings is defined as:

𝑑(𝐶,𝐶 ′) = 𝑓(𝐶) + 𝑓(𝐶 ′)− 2𝑓(𝐶 ∧ 𝐶 ′)

where 𝐶 ∧𝐶 ′ is the join of the two clusterings in the lattice. Then 𝑓(𝐶) =
∑︀𝑘

𝑖 𝑛
2
𝑖

becomes the RI.

The Variation of Information (VI ) is another measure closely related to mutual

information between two clusterings. By setting 𝑓(𝐶) =
∑︀𝑘

𝑖 𝑛𝑖 log 𝑛𝑖 we get the VI.

This is our primary measure used compare against other state-of-the-art connectome

pipelines. Because we are mostly concerned with the merge error, in table ?? the
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Table 10.1: Variation of Information
Pipeline Name Split Error Merge Error Total VI
NIPS 1.4164 0.6035 2.0199
Random Forest 1.7870 0.7069 2.4938
Ax-MO 1.5941 0.7915 2.3856
CNN (AlexNet ) 1.6032 0.7889 2.3921

total VI is separated into split and merge errors.

Aside from evaluating the pipeline on the ISBI data sets (for which we have 100MB

of the ground truth), we also run the pipeline on the 80GB kasthuri11 data set. For

the evaluation of probability map generation see Chapter 5, and for the performance

evaluation of oversegmentation see Chapter 6.
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Chapter 11

Summary and Outlook

The research in this thesis focused on the problem of automated connectome recon-

struction from electron microscopy images of a mammalian brain. Towards solving

this problem, we proposed a multi-stage pipeline based on machine learning algo-

rithms, starting with aligned images and ending with a skeleton. Our particular

contributions are in the earliest stages of the pipeline: probability map and overseg-

mentation generation.

In Chapter 3 we provided a high-level architecture of the pipeline, and in Chapter

9 we proposed an extension for more advanced computation flows.

Machine learning-based image segmentation, in particular the probability map

generation, is the core focus of this thesis. In Chapter 5 we proposed two approaches

to image segmentation: the random-forest and the convolutional neural network. We

implemented both of them and provided a quantitative analysis. Because the sliding-

window CNN achieved much lower error rate, at at very high computational cost, we

proposed two performance improvements. The fully convolutional network offers a

two-orders of magnitude theoretical speedup and the (early) experimental results are

promising. The combined RF and CNN sampling approach is both more accurate

and fast. Our classifiers were trained on multiple data sets, based on different ground

truth transformations and labels non-uniformity.

In Chapter 6 we described image oversegmentation based on the watershed algo-

rithm. We performance engineered our watershed implementation to offer two-orders
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of magnitude improvement in speed and one-order of magnitude decrease of memory

working set.

We concluded the pipeline with a brief description of the agglomeration and skele-

tonization stages. As of this writing, the pipeline can process in-memory data sets

in range 100 GB - 1 TB, and both the probability map generation and the water-

shed algorithms can process much bigger data sets by splitting the input into smaller

sub-volumes (sequentially or in parallel).

There are multiple potential improvements to the pipeline. On the performance

side, we can generate probability maps and oversegment at the order of 1 MB per

second. This is fast, but the microscope is about two orders of magnitude faster,

thus we are still the blocking stage. Furthermore, multi-core performance engineering

could bring the pipeline closer to the desired real-time processing speed.

With improved splitting and merging techniques, we might be able to provide

high-accuracy agglomeration. Having all steps of the pipeline distributed across many

multi-core systems, we should be able to gain another order of magnitude in through-

put.

Oversegmentation with watershed is not necessarily the most accurate technique,

as the fluid tends to spill in between the 𝑧-index slices. To mitigate this problem, it

seems intuitive to use both 2D and 3D deep neural networks to further decrease pixel

error rate and the variation of information.

Incorporating biological prior knowledge should also improve the agglomeration

step. Currently, only the membrane and synapses probability maps are consider in

Neuroproof. Efforts are being undertaken to include other biological features, such

as the axons’ skeleton probability map.

Lastly, current visualization software is adequate only for data sets on the order

of hundreds to thousands MB. With the processing volumes soon exceeding the TB

range, we will need to address the issues visualization and biological information

extraction.

We are optimistic about the outlook of the connectome project. We believe we

will soon see interesting, novel neuroscientific results.
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Appendix A

Nervous System of Caenorhabditis

Elegans

Consists of 302 neurons.
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Figure A-1: C. Elegan’s nervous system
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Appendix B

Visualization of Convolutional Neural

Networks

An example of the network specification file.
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1: procedure NetworkSpecification
2: input: "data"
3: input_dim: 1
4: input_dim: 1
5: input_dim: 49
6: input_dim: 49
7: layer {
8: name: "conv1"
9: type: "Convolution"

10: bottom: "data"
11: top: "conv1"
12: param {
13: lr_mult: 1.0
14: decay_mult: 1.0
15: }
16: param {
17: lr_mult: 2.0
18: decay_mult: 0.0
19: }
20: convolution_param {
21: num_output: 96
22: kernel_size: 11
23: stride: 4
24: weight_filler {
25: type: "gaussian"
26: std: 0.01
27: }
28: bias_filler {
29: type: "constant"
30: value: 0.0
31: }
32: }
33: }
34: layer {
35: name: "relu1"
36: type: "ReLU"
37: bottom: "conv1"
38: top: "conv1"
39: }
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40: layer {
41: name: "norm1"
42: type: "LRN"
43: bottom: "conv1"
44: top: "norm1"
45: lrn_param {
46: local_size: 5
47: alpha: 0.0001
48: beta: 0.75
49: }
50: }
51: layer {
52: name: "conv4"
53: type: "Convolution"
54: bottom: "norm1"
55: top: "conv4"
56: param {
57: lr_mult: 1.0
58: decay_mult: 1.0
59: }
60: param {
61: lr_mult: 2.0
62: decay_mult: 0.0
63: }
64: convolution_param {
65: num_output: 384
66: pad: 1
67: kernel_size: 3
68: group: 2
69: weight_filler {
70: type: "gaussian"
71: std: 0.01
72: }
73: bias_filler {
74: type: "constant"
75: value: 0.1
76: }
77: }
78: }
79: layer {
80: name: "relu4"
81: type: "ReLU"
82: bottom: "conv4"
83: top: "conv4"
84: }
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85: layer {
86: name: "fc6"
87: type: "InnerProduct"
88: bottom: "conv4"
89: top: "fc6"
90: param {
91: lr_mult: 1.0
92: decay_mult: 1.0
93: }
94: param {
95: lr_mult: 2.0
96: decay_mult: 0.0
97: }
98: inner_product_param {
99: num_output: 4096
100: weight_filler {
101: type: "gaussian"
102: std: 0.005
103: }
104: bias_filler {
105: type: "constant"
106: value: 0.1
107: }
108: }
109: }
110: layer {
111: name: "relu6"
112: type: "ReLU"
113: bottom: "fc6"
114: top: "fc6"
115: }
116: layer {
117: name: "drop6"
118: type: "Dropout"
119: bottom: "fc6"
120: top: "fc6"
121: dropout_param {
122: dropout_ratio: 0.5
123: }
124: }
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Algorithm 5 An Example of the Network Specification File
125: layer {
126: name: "fc8"
127: type: "InnerProduct"
128: bottom: "fc6"
129: top: "fc8"
130: param {
131: lr_mult: 1.0
132: decay_mult: 1.0
133: }
134: param {
135: lr_mult: 2.0
136: decay_mult: 0.0
137: }
138: inner_product_param {
139: num_output: 2
140: weight_filler {
141: type: "gaussian"
142: std: 0.01
143: }
144: bias_filler {
145: type: "constant"
146: value: 0.0
147: }
148: }
149: }
150: layer {
151: name: "prob"
152: type: "Softmax"
153: bottom: "fc8"
154: top: "prob"
155: }
156: end procedure
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Figure B-1: Left: N3, right: AlexNet
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Figure B-2: Left to right: ShortNet1, ShortNet2, ShortNet3
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Figure B-3: Left: BN1, Right: BN2
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